Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

KOSMOS

Plant cultures in vitro – from medicine production to biodiversity conservation
  • Home
  • /
  • Plant cultures in vitro – from medicine production to biodiversity conservation
  1. Home /
  2. Archives /
  3. Vol. 74 No. 2 (346) (2025): Plants and People – A Shared History, a Shared Future /
  4. Articles

Plant cultures in vitro – from medicine production to biodiversity conservation

Authors

  • Danuta Solecka Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw https://orcid.org/0000-0002-0969-7209

DOI:

https://doi.org/10.12775/KOSMOS.2025.016

Keywords

biodiversity, callus, in vitro cultures, micropropagation, dune plants, somatic embryos

Abstract

In vitro plant cultures are becoming an increasingly important tool in biodiversity conservation and sustainable development. They not only enable the extraction of valuable substances without destroying plants in their natural environment and regardless of climatic conditions, but also the propagation of endangered species and their reintroduction. The article presents an overview of the applications of various types of in vitro cultures in medicine (production of drugs, therapeutic proteins), agriculture (biostimulants, micropropagation), the food industry (colorants, enzymes), and modern technologies (nanomaterials). Particular attention is paid to the use of in vitro cultures in the protection of endangered, wild and cultivated species. The article emphasizes the importance of an integrated approach combining knowledge in the fields of biotechnology, chemistry, and environmental protection. Despite the difficulties in obtaining efficient and longlived cultures, especially of monocotyledonous plants, in vitro technologies today not only support industry, but also offer a real opportunity to preserve natural resources for future generations.

References

Agrawal, A., Gowthami, R., Chander, S., Srivastava, V., 2022. Sustainability of in vitro genebanks and cryogenebanks, 180–184. https://doi.org/10.5958/0976-1926.2022.00065.1

Ahmad, Z., Shareen Ganie, I.B., Firdaus, F., Ramakrishnan, M., Shahzad, A. i in., 2024. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. Plants, 13(15), 2171. https://doi.org/10.3390/plants 13152171

Alanagh, E.N., Garoosi, G.A., Haddad, R., Maleki, S., Landín, M., i in., 2014. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell, Tissue and Organ Culture (PCTOC), 117(3), 349–359. https://doi.org/10.1007/s11240-014-0444-1

Babich, O., Sukhikh, S., Pungin, A., Ivanova, S., Asyakina, L. i in., 2020. Modern trends in the in vitro production and use of callus, suspension cells and root cultures of medicinal plants. Molecules, 25(24), 5805. https://doi.org/10.3390/molecules25245805

Bairu, M.W., Kane, M.E., 2011. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regulators, 63, 101–103. https://doi.org/10. 1007/s10725-011-9565-2

Behera, P.P., Sivasankarreddy, K., Prasanna, V.S.S.V., 2022. Somatic embryogenesis and plant regeneration in horticultural crops. W: Commercial scale tissue culture for horticulture and plantation crops, pp. 197–217. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0055-6_9

Bennur, P. L., O’Brien, M., Fernando, S. C., Doblin, M. S., 2025. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. Journal of Experimental Botany, 76(1), 52–75. https://doi.org/10.1093/jxb/erae189

Bernaś, E., Słupski, J., Gębczyński, P., Ražná, K., Žiarovská, J., 2023. Chemical Composition and genome Pattern as a Means of Identifying the Origin of Preserved Wild Garlic (Allium ursinum L.) in Poland. Agriculture, 14(1), 20. https://doi.org/10.3390/agriculture14010020

Betekhtin, A., Hus, K., Rojek-Jelonek, M., Kurczynska, E., Nibau, C., Doonan, J. H., i Hasterok, R. (2020). In vitro tissue culture in Brachypodium: applications and challenges. International Journal of Molecular Sciences, 21(3), 1037. https://doi.org/10.3390/ijms21031037

Bettoni, J.C., Wang, M.R., Wang, Q.C., 2024. In vitro regeneration, micropropagation and germplasm conservation of horticultural plants. Horticulturae, 10(1), 45. https://doi.org/10.3390/horticulturae10010045

Bhattacharyya, P., Kumaria, S., Tandon, P., 2016. High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. South African Journal of Botany, 104, 232–243. https://doi.org/10.1016/j.sajb.2015.11.013

Bonga, M., J., Klimaszewska, K., K., Aderkas, V., 2010. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue and Organ Culture (PCTOC), 100, 241–254. https://doi.org/10.1007/s11240-009-9647-2

Brudzyńska, P., Sionkowska, A., Grisel, 2021. Plant-derived colorants for food, cosmetic and textile industries: A review. Materials, 14(13), 3484. https://doi.org/10.3390/ma14133484

Chandana, B.C., Kumari Nagaveni, H.C., Lakshmana, D., Shashikala, S.K., Heena, M.S., 2018. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. Journal of Pharmacognosy and Phytochemistry, 3, 246–251.

Chen, J.Y., Yue, R.Q., Xu, H.X., Chen, X.J., 2006. Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agricultural Sciences in China, 5(8), 572–578. https://doi.org/10.1016/s1671-2927(06)60094-1

Chokheli, V.A., Dmitriev, P.A., Rajput, V.D., Bakulin, S.D., Azarov, A.S., 2020. Recent development in micropropagation techniques for rare plant species. Plants, 9(12), 1733. https://doi.org/10.3390/plants9121733

Coelho, N., Gonçalves, S., Romano, A., 2020. Endemic plant species conservation: Biotechnological Approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345

Corlett, T.R., 2016. Plant diversity in a changing world: status, trends, and conservation needs. Plant Diversity, 38(1), 10–16. https://doi.org/10.1016/j.pld.2016.01.001

Corlett, T.R., 2024. The ecology of plant extinctions. Trends in Ecology i Evolution, 40(3), 286–295. https://doi.org/10.1016/j. tree.2024.11.007

Cranenbrouck, S., Voets, L., Bivort, C., Renard, L., Strullu, DG., Declerck, S., 2005. Methodologies for in Vitro Cultivation of Arbuscular Mycorrhizal Fungi with Root Organs. W: Declerck, S., Fortin, J.A., Strullu, DG. (red.) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_18

Custódio, L., Charles, G., Magné, C., Barba--Espín, G., Piqueras, A., i in., 2022. Application of in vitro plant tissue culture techniques to halophyte species: A review. Plants, 12(1), 126. https://doi.org/10.3390/plants12010126

Custódio, L., Cziáky, Z., Castañeda-Loaiza, V., Rodrigues, M.J., 2024. Establishment and elicitation of liquid adventitious root cultures of Inula crithmoides L. for increased caffeoylquinic acids production and hepatoprotective properties. Plant Cell, Tissue and Organ Culture (PCTOC), 156(2), 59. https://doi.org/10.1007/s11240-024-02690-z

Dziurka, M., Kubica, P., Kwiecień, I., Biesaga--Kościelniak, J., Ekiert, H. i in., 2021. In vitro cultures of some medicinal plant species (Cistus× incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants – Evaluation by CUPRAC and QUENCHER--CUPRAC assays. Plants, 10(3), 454. https://doi.org/10.3390/plants1003045

Ebert, W.A., Engels, M.J., 2020. Plant biodiversity and genetic resources matter!. Plants, 9(12), 1706. https://doi.org/10.3390/plants9121706

Efferth, T., 2019. Biotechnology applications of plant callus cultures. Engineering, 5(1), 50–59. https://doi.org/10.1016/j.eng. 2018.11.006

Escobedo-GraciaMedrano, R.M., Enríquez-Valencia, A.J., Youssef, M., López-Gómez, P., Cruz-Cárdenas, C.I. i in., 2016. Somatic Embryogenesis in Banana, Musa ssp. W: Somatic embryogenesis: fundamental aspects and applications, 381–400. https://doi.org/10.1007/978-3-319-33705-0_21

Espinosa-Leal, A.C., Puente-Garza, A.C., García-Lara, 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta, 248, 1–18. https://doi.org/10.1007/s00425-018-2910-1

Garrocho-Villegas, V., Jesús-Olivera, T.M., Quintanar, E.S., 2012. Maize somatic embryogenesis: recent features to improve plant regeneration. Plant Cell Culture Protocols, 173–182. https://doi.org/10.1007/978-1-61779-818-4_14

Gautheret, J.R., 1983. Plant tissue culture: A history. The Botanical Magazine= Shokubutsu-gaku-zasshi, 96, 393–410. Gogoi, M.B., Chetia, I., Sarmah, B.K., Nath, T., Bhowal, S. i in., 2020. Study of androgenesis in (Musa balbisiana) cv. Bhimkol banana and in vitro regeneration of haploids using isolated microspore culture. International Journal of Current Microbiology and Applied Sciences, 9, 2555–2565. https://doi.org/10.20546/ijcmas.2020.909.320

Gupta, N., Bhattacharya, S., Dutta, A., Cusimamani, E.F., Milella, L., 2024. In vitro synthetic polyploidization in medicinal and aromatic plants for enhanced phytochemical efficacy – a mini-review. Agronomy, 14(8), 1830. https://doi.org/10.3390/agronomy14081830

Hano, C., Abbasi, H.B., 2021. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31. https://doi.org/10.3390/biom12010031

Hasnain, A., Naqvi, S.A.H., Ayesha, S.I., Khalid, F., Ellahi, M. i in., 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395

Ikeuchi, M., Sugimoto, K., Iwase, 2013. Plant callus: mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053

Kaushal, N., Srivastava, V., Singh, S., Gangwar, R., Singh, P. i in., 2023. A comprehensive review on role of plant tissue culture in ornamental crops: cultivation factors, applications and future aspects. International Journal of Environment and Climate Change, 13(11), 1802–1815. https://doi.org/10.9734/ijecc/2023/v13i113337

Kaviani, B., Kulus, D., 2022. Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biology, 11(6), 847. https://doi.org/10.3390/biology11060847

Kougioumoutzis, K., Tsakiri, M., Kokkoris, I.P., Trigas, P., Iatrou, G. i in., 2024. Assessing the vulnerability of medicinal and aromatic plants to climate and land-use changes in a Mediterranean biodiversity hotspot. Land, 13(2), 133. https://doi.org/10.3390/land13020133

Krasteva, G., Georgiev, V., Pavlov, A., 2020. Recent applications of plant cell culture technology in cosmetics and food industries. Engineering in Life Sciences, 20(12), 531–540. https://doi.org/10.1002/elsc.202000078

Kulus, D., Tymoszuk, A., 2024. Advancements in In Vitro Technology: A Comprehensive Exploration of Micropropagated Plants. Horticulturae, 10(1), 88. https://doi.org/10.3390/horticulturae10010088

Loyola-Vargas, M.V., Ochoa-Alejo, N., 2018. An introduction to plant tissue culture: advances and perspectives. Plant Cell Culture Protocols, 3–13. https://doi.org/10.1007/978-14939-8594-4_ 1

Loyola-Vargas, M.V., Ochoa-Alejo, N., 2024. An Introduction to Plant Cell, Tissue, and Organ Culture: Current Status and Perspectives. Plant Cell Culture Protocols, 1–13. https://doi.org/10.1007/978-1-0716-3954-2_1

Mansinhos, I., Gonçalves, S., Romano, A., 2024. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. Frontiers in Plant Science, 15, 1370810. https://doi.org/10.3389/fpls.2024.1370810

McFarland, L.F., Kaeppler, F.H., 2025. History and current status of embryogenic culture‐based tissue culture, transformation and gene editing of maize (Zea mays L.). Plant Genome, 18(1), e20451. https://doi.org/10.1002/tpg2.20451

Mikuła, A., Chmielarz, P., Hazubska-Przybył, T., Kulus, D., Maślanka, M. i in., 2022. Cryopreservation of Plant Tissues in Poland: Research Contributions, Current Status, and Applications. Acta Societatis Botanicorum Poloniae, 91. https://doi.org/10.5586/asbp.9132

Miroshnichenko, D., Chaban, I., Chernobrovkina, M., Dolgov, S., 2017. Protocol for efficient regulation of in vitro morphogenesis in einkorn (Triticum monococcum L.), a recalcitrant diploid wheat species. PLoS One, 12(3), e0173533. https://doi.org/10.1371/journal.pone.0173533

Miroshnichenko, T.M., Ivchenko, T.V., Bashtan, N.O., Mozgovska, H.V., 2023. Medium Composition For In Vitro Mid-Term Storage Of Solanum Habrochaites Test-Tube Plants. Vegetable and Melon Growing, (74), 6–18. https://doi.org/10.32717/0131-0062-2023-74-6-18

Monder, J.M., Pacholczak, A., Zajączkowska, M., 2024. Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture, 14(12), 2328. https://doi.org/10.3390/agriculture14122328

Moraes, M.R., Cerdeira, L.A., Lourenço, M.V., 2021. Using micropropagation to develop medicinal plants into crops. Molecules, 26(6), 1752. https://doi.org/10.3390/molecules26061752

Oluwaseun Adetunji, C., Mathew, J.T., Inobeme, A., Olaniyan, O.T., RB Singh, K. i in., 2022. Microbial and plant cell biosensors for environmental monitoring. W: Nanobiosensors for Environmental Monitoring, Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (red.), pp. 175–190. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-16106-3_9

Patiño, D., Figueroa, L.T., 2025. Micropropagation of banana cv. Williams through temporary immersion system: Response to explant density and plant growth regulators. Agroindustrial Science, 15(1), 49–54. https://doi.org/10.17268/agroind.sci.2025.01.05

Perzanowska, J., Korzeniak, J., 2020. Red list of Natura 2000 habitat types of Poland. Journal for Nature Conservation, 56, 125834. https://doi.org/10.1016/j.jnc.2020.125834

Petrova, M., Zayova, E., Geneva, M., Dimitrova, L., Vitkova, A. i in., 2021. Multiplication and conservation of threatened medicinal plant Arnica montana L. by in vitro techniques. Agriculturae Conspectus Scientificus, 86(1), 57–65.

Peyret, H., Steele, J.F., Jung, J.W., Thuenemann, E.C., Meshcheriakova, Y. i in., 2021. Producing vaccines against enveloped viruses in plants: Making the impossible, difficult. Vaccines, 9(7), 780. https://doi.org/10.3390/vaccines9070780

Podwyszyńska, M., Orlikowska, T., Trojak-Goluch, A., Wojtania, A., 2022. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Societatis Botanicorum Poloniae, 91(1), 914. https://doi.org/10.5586/asbp.914

Posmyk, M.M., Szafrańska, K., 2016. Biostimulators: a new trend towards solving an old problem. Frontiers in Plant Science 7, 748. https://doi.org/10.3389/fpls.2016.00748

Priyanka, V., Kumar, R., Dhaliwal, I., Kaushik, P., 2021. Germplasm conservation: instrumental in agricultural biodiversity–a review. Sustainability, 13(12), 6743. https://doi.org/10.3390/su13126743

Radomir, A.M., Stan, R., Florea, A., Ciobotea, C.M., Bănuță, F.M. i in., 2023. Overview of the success of in vitro culture for ex situ conservation and sustainable utilization of endemic and subendemic native plants of Romania. Sustainability, 15(3), 2581. https://doi.org/10.3390/su15032581

Rajan, R.P., Singh, G.U.R.P.R.E.E.T., 2021. A review on application of somaclonal variation in important horticulture crops. Plant Cell Biotechnology and Molecular Biology, 22, 161–175. https://doi.org/10.51470/plantarchives.2021.v21.s1.103

Ramachandra Rao, S., Ravishankar, G.A., 2002. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. https://doi.org/10.1016/s0734-9750(02)00007-1

Ruta, C., Lambardi, M., Ozudogru, E.A., 2020. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodiversity and Conservation, 29, 3495–3532. https://doi.org/10.1007/s10531-020-02051-0

Saha, S., Chowdhury, T., Ghosh, P., 2022. Micropropagation for Stress Tolerance in Crop Plants: An Overview. W: Response of Field Crops to Abiotic Stress, 241249, CRC Press. https://doi.org/10.1201/9781003258063-20

Sarmah, D., Kolukunde, S., Sutradhar, M., Singh, B. K., Mandal, T. i in., 2017. A review on: in vitro cloning of orchids. International Journal of Current Microbiology and Applied Sciences, 6(9), 1909–27. https://doi.org/10.20546/ijcmas.2017.609.235

Schenk, R.U., Hildebrandt, A.C., 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199–204. Singh, D., Srivastava, S., Verma, S.K., Singh, V., 2025. Advances in Medicinal Plant Biotechnology and Future Directions. W: Biotechnology, Multiple Omics, and Precision Breeding in Medicinal Plants, pp. 258–269, CRC Press. https://doi.org/10.1201/9781003475491-19

Singh, R.K., Chokheli, V.A., 2025. Plant Biotechnology: Applications in In Vitro Plant Conservation and Micropropagation. Horticulturae, 11(4), 358. https://doi.org/10.3390/horticulturae11040358

Sharma, P., i Jain, S.M., 2024. Micropropagation Applications in Conservation of Horticultural Crops. Sustainable Utilization and Conservation of Plant Genetic Diversity (pp. 683–710). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99- 5245-8_20

Sochacki, D., Marciniak, P., Zajączkowska, M., Treder, J., Kowalicka, P., 2024. In situ and ex situ conservation of Ornamental Geophytes in Poland. Sustainability, 16(13), 5375. https://doi.org/10.3390/su16135375

Solís-Ramos, L.Y., Andrade-Torres, A., Carbonell, L.A.S., Salín, C.M.O., de la Serna, E.C., 2012. Somatic embryogenesis in recalcitrant plants. W: Embryogenesis. IntechOpen. https://doi.org/10.5772/35967

Solórzano-Acosta, R., Guerrero-Padilla, M., 2020. Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red. American Journal of Plant Sciences, 11(9), 1429–1442. https://doi.org/10.4236/ajps.2020.119103

Teixeira da Silva, J.A., Gulyás, A., Magyar-Tábori, K., Wang, M.R., Wang, Q.C., i in., 2019. In vitro tissue culture of apple and other Malus species: recent advances and applications. Planta, 249(4), 975–1006. https://doi.org/10.1007/s00425-019-03100-x

Thorpe, A.T., 2000. History of plant cell culture. W: Loyola-Vargas, V.M., Vázquez-Flota, F. (red.), Plant Cell Tissue Culture. Techniques and Experiments, 1–32, Humana Press. https://doi.org/10.1385/1-59259-959-1:009

Tienaho, J., Reshamwala, D., Karonen, M., Silvan, N., Korpela, L. i in., 2021. Field-grown and in vitro propagated round-leaved sundew (Drosera rotundifolia L.) show differences in metabolic profiles and biological activities. Molecules, 26(12), 3581. https://doi.org/10.3390/molecules26123581

Tiwari, P., Sharma, A., Bose, S.K., Park, K. I., 2024. Advances in orchid biology: biotechnological achievements, translational success, and commercial outcomes. Horticulturae, 10(2), 152. https://doi.org/10.3390/horticulturae10020152

Tripathi, M.K., Tiwari, S., Tripathi, N., Tiwari, G., Bhatt, D. i in., 2021. Plant tissue culture techniques for conservation of biodiversity of some plants appropriate propagation in degraded and temperate areas. Current Topics in Agricultural Sciences; BP International Publisher: Bhanjipur, India, 4, 30–60. https://doi.org/10.9734/bpi/ctas/v4/2119c

Venkataraman, S., Khan, I., Habibi, P., Le, M., Lippert, R. i in., 2023. Recent advances in expression and purification strategies for plant made vaccines. Frontiers in Plant Science, 14, 1273958. https://doi.org/10.3389/fpls.2023.1273958

Walters, C., Pence, V.C., 2021. The unique role of seed banking and cryobiotechnologies in plant conservation. Plants, People, Planet, 3(1), 83–91. https://doi.org/10.1002/ppp3.10121

Wang, M.R., Bettoni, J.C., Zhang, A.L., Lu, X., Zhang, D. i in., 2022. In vitro micrografting of horticultural plants: Method development and the use for micropropagation. Horticulturae, 8(7), 576. https://doi.org/10.3390/horticulturae8070576

Wang, Z., Xing, Y., Zhao, C., Ren, S., Wu, J. i in., 2023. The RUBY reporter enables efficient haploid identification in maize and tomato. Plant Biotechnology Journal, 21(3), 654656. https://doi.org/10.1111/pbi.14071

Wawrosch, C., Zotchev, S.B., 2021. Production of bioactive plant secondary metabolites through in vitro technologies–status and outlook. Applied Microbiology and Biotechnology, 105(18), 6649–6668. https://doi.org/10.1007/s00253-021-11539-w

Yusibov, V., Kushnir, N., Streatfield, S.J., 2016. Antibody production in plants and green algae. Annual Review of Plant Biology, 67(1), 669–701. https://doi.org/10.1146/annurev--arplant-043015-11181 2

Zhang, H., Li, Y., Zhu, J.K., 2018. Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 4(12), 989–996. https://doi.org/10.1038/s41477018-0309-4

Zhu, L., Zhou, L., Li, J., Chen, Z., Wang, M. i in., 2024. Regeneration of ornamental plants: current status and prospects. Ornamental Plant Research, 4: e022. https://doi.org/10.48130/opr-0024-0022

Zimnoch-Guzowska, E., Chmielarz, P., Wawrzyniak, M.K., Plitta-Michalak, B.P., Michalak, M. i in., 2022. Polish cryobanks: Research and conservation of plant genetic resources. Acta Societatis Botanicorum Poloniae, 91, 9121. https://doi.org/10.5586/asbp.9121

Żabicka, J., Żabicki, P., Słomka, A., Jędrzejczyk--Korycińska, M., Nowak, T. i in., 2021. Genotype-dependent mass somatic embryogenesis: a chance to recover extinct populations of Pulsatilla vulgaris Mill. Plant Cell, Tissue and Organ Culture (PCTOC), 146, 345–355. https://doi.org/10.1007/s11240-021-02074-7

Żabicki, P., Sliwinska, E., Mitka, J., Sutkowska, A., Tuleja, M. i in., 2019. Does somaclonal variation play advantageous role in conservation practice of endangered species?: comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina Kit. (Violaceae). Plant Cell, Tissue and Organ Culture (PCTOC), 136, 339–352. https://doi.org/10.1007/s11240-018-1519-1

KOSMOS

Downloads

  • PDF (Język Polski)

Published

2025-06-30

Issue

Vol. 74 No. 2 (346) (2025): Plants and People – A Shared History, a Shared Future

Section

Articles

License

Copyright (c) 2026 KOSMOS

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stats

Number of views and downloads: 23
Number of citations: 0

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop