G protein-coupled receptors activated by free fatty acids
DOI:
https://doi.org/10.12775/KOSMOS.2025.002Keywords
free fatty acids, G protein-coupled receptors (GPCR), free fatty acid receptors (FFAR), signal transduction, metabolic diseases, therapyAbstract
Free fatty acid receptors (FFAR) belong to the family of G protein-coupled receptors (GPCR), i.e. the most abundant group of membrane proteins involved in signal transduction from the outer environment to the cell. In the present paper we characterize four human receptors activated by free fatty acids: FFAR1/GPR40, FFAR2 /GPR43, FFAR3/GPR41 and FFAR4/GPR120. We describe signaling pathways trigged by these receptors and we discuss their importance under both physiological and pathological conditions. We also indicate future perspectives of FFAR ligands application in therapy, including the treatment of cancers, diabetes and obesity.
References
Abumrad N.A., Davidson N.O. (2012). Role of the Gut in Lipid Homeostasis. Physiological Reviews 92: 1061–1085. https://doi.org/10.1152/physrev.00019.2011
Al Sharif M., Alrow P., Vitcheva V., Pajeva I., Tsakowska I. (2014). Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Research 2014: 1–13. https://doi.org/10.1155/2014/432647
Anbazhagan A.N., Priyamvada S., Gujral T., Bhattacharyya S., Alrefai W.A., i in. (2016). A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. American Journal of Physiology-Cell Physiology 310: C612–C621. https://doi.org/10.1152/ajpcell.00123.2015
Biela S., Winiarska K. (2024). Nowo odkryte funkcje mleczanu. Kosmos 72: 359–370. https://doi.org/10.36921/kos.2023_2963
Binienda A., Fichna J. (2024). Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutrition Research 127: 133–143. https://doi.org/10.1016/j.nutres.2024.05.007
De Carvalho C., Caramujo M. (2018). The Various Roles of Fatty Acids. Molecules 23: 2583. https://doi.org/10.3390/molecules23102583
Grundmann M., Bender E., Schamberger J., Eitner F. (2021). Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. International Journal of Molecular Sciences 22: 1763. https://doi.org/10.3390/ijms22041763
He J., Zhang P., Shen L., Niu L., Tan Y., i in. (2020). Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences 21: 6356. https://doi.org/10.3390/ijms21176356
Ichimura A., Hirasawa A., Poulain-Godefroy O., Bonnefond A., Hara T., i in. (2012). Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483: 350–354. https://doi.org/10.1038/nature10798
Ikeda T., Nishida A., Yamano M., Kimura I. (2022). Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacology & Therapeutics 239: 108273. https://doi.org/10.1016/j.pharmthera.2022.108273
Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. (2020). Free Fatty Acid Receptors in Health and Disease. Physiological Reviews 100: 171–210. https://doi.org/10.1152/physrev.00041.2018
Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., i in. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences 108: 8030–8035. https://doi.org/10.1073/pnas.1016088108
Kimura I., Ozawa K., Inoue D., Imamura T., Kimura K., i in. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4: 1829. https://doi.org/10.1038/ncomms2852
Kumari P., Inoue A., Chapman K., Lian P., Rosenbaum D.M. (2023). Molecular mechanism of fatty acid activation of FFAR1. Proceedings of the National Academy of Sciences 120: e2219569120. https://doi.org/10.1073/pnas.2219569120
Lagerström M.C., Schiöth H.B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews Drug Discovery 7: 339–357. https://doi.org/10.1038/nrd2518
Lee Y.J., Son S.E., Im D.S. (2024). Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. International Immunopharmacology 127: 111428. https://doi.org/10.1016/j.intimp.2023.111428
Lis J., Fichna J., Tarasiuk-Zawadzka A. (2025). The role of free fatty acid receptors activation in pancreatic disorders. Molecular Aspects of Medicine 104: 101386. https://doi.org/10.1016/j.mam.2025.101386
Loona D.P.S., Das B., Kaur R., Kumar R., Yadav A.K. (2023). Free Fatty Acid Receptors (FFARs): Emerging Therapeutic Targets for the Management of Diabetes Mellitus. Current Medicinal Chemistry 30: 3404–3440. https://doi.org/10.2174/0929867329666220927113614
Melhem H., Kaya B., Ayata C.K., Hruz P., Niess J.H. (2019). Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells 8: 450. https://doi.org/10.3390/cells8050450
Milligan G., Alvarez-Curto E., Hudson B.D., Prihandoko R., Tobin A.B. (2017). FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends in Pharmacological Sciences 38: 809–821. https://doi.org/10.1016/j.tips.2017.06.006
Rady B., Liu J., Huang H., Bakaj I., Qi J., i in. (2022). A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Frontiers in Endocrinology 13: 1061688. https://doi.org/10.3389/fendo.2022.1061688
Raptis D.A., Limani P., Jang J.H., Ungethüm U., Tschuor C., i in. (2014). GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. Journal of Hepatology 60: 625–632. https://doi.org/10.1016/j.jhep.2013.11.006
Senatorov I.S., Moniri N.H. (2018). The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochemical Pharmacology 150: 170–180. https://doi.org/10.1016/j.bcp.2018.02.011
Talukdar S., Olefsky J.M., Osborn O. (2011). Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends in Pharmacological Sciences 32: 543–550. https://doi.org/10.1016/j.tips.2011.04.004
Tan J.K., McKenzie C., Mariño E., Macia L., Mackay C.R. (2017). Metabolite-Sensing G Protein-Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology 35: 371–402. https://doi.org/10.1146/annurev-immunol-051116-052235
Yamamoto Y., Narumi K., Yamagishi N., Yonejima Y., Iseki K., i in. (2025). HYA ameliorated postprandial hyperglycemia in type 1 diabetes model rats with bolus insulin treatment. Acta Diabetologica 62: 1337–1345. https://doi.org/10.1007/s00592-025-02459-6
Yang Y.M., Kuen D.S., Chung Y., Kurose H., Kim S.G. (2020). Ga12/13 signaling in metabolic diseases. Experimental & Molecular Medicine 52: 896–910. https://doi.org/10.1038/s12276-020-0454-5
Yu F., Zong B., Ji L., Sun P., Jia D., i in. (2024). Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. International Journal of Molecular Sciences 25: 7853. https://doi.org/10.3390/ijms25147853
Downloads
Published
Issue
Section
License
Copyright (c) 2025 KOSMOS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stats
Number of views and downloads: 66
Number of citations: 0