Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

KOSMOS

G protein-coupled receptors activated by free fatty acids
  • Home
  • /
  • G protein-coupled receptors activated by free fatty acids
  1. Home /
  2. Archives /
  3. Vol. 74 No. 1 (345) (2025): Varia /
  4. Articles

G protein-coupled receptors activated by free fatty acids

Authors

  • Justyna Kalinowska Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw https://orcid.org/0009-0008-1163-0151
  • Katarzyna Winiarska Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology; University of Warsaw https://orcid.org/0000-0001-8693-6069

DOI:

https://doi.org/10.12775/KOSMOS.2025.002

Keywords

free fatty acids, G protein-coupled receptors (GPCR), free fatty acid receptors (FFAR), signal transduction, metabolic diseases, therapy

Abstract

Free fatty acid receptors (FFAR) belong to the family of G protein-coupled receptors (GPCR), i.e. the most abundant group of membrane proteins involved in signal transduction from the outer environment to the cell. In the present paper we characterize four human receptors activated by free fatty acids: FFAR1/GPR40, FFAR2 /GPR43, FFAR3/GPR41 and FFAR4/GPR120. We describe signaling pathways trigged by these receptors and we discuss their importance under both physiological and pathological conditions. We also indicate future perspectives of FFAR ligands application in therapy, including the treatment of cancers, diabetes and obesity.

References

Abumrad N.A., Davidson N.O. (2012). Role of the Gut in Lipid Homeostasis. Physiological Reviews 92: 1061–1085. https://doi.org/10.1152/physrev.00019.2011

Al Sharif M., Alrow P., Vitcheva V., Pajeva I., Tsakowska I. (2014). Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Research 2014: 1–13. https://doi.org/10.1155/2014/432647

Anbazhagan A.N., Priyamvada S., Gujral T., Bhattacharyya S., Alrefai W.A., i in. (2016). A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. American Journal of Physiology-Cell Physiology 310: C612–C621. https://doi.org/10.1152/ajpcell.00123.2015

Biela S., Winiarska K. (2024). Nowo odkryte funkcje mleczanu. Kosmos 72: 359–370. https://doi.org/10.36921/kos.2023_2963

Binienda A., Fichna J. (2024). Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutrition Research 127: 133–143. https://doi.org/10.1016/j.nutres.2024.05.007

De Carvalho C., Caramujo M. (2018). The Various Roles of Fatty Acids. Molecules 23: 2583. https://doi.org/10.3390/molecules23102583

Grundmann M., Bender E., Schamberger J., Eitner F. (2021). Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. International Journal of Molecular Sciences 22: 1763. https://doi.org/10.3390/ijms22041763

He J., Zhang P., Shen L., Niu L., Tan Y., i in. (2020). Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences 21: 6356. https://doi.org/10.3390/ijms21176356

Ichimura A., Hirasawa A., Poulain-Godefroy O., Bonnefond A., Hara T., i in. (2012). Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483: 350–354. https://doi.org/10.1038/nature10798

Ikeda T., Nishida A., Yamano M., Kimura I. (2022). Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacology & Therapeutics 239: 108273. https://doi.org/10.1016/j.pharmthera.2022.108273

Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. (2020). Free Fatty Acid Receptors in Health and Disease. Physiological Reviews 100: 171–210. https://doi.org/10.1152/physrev.00041.2018

Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., i in. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences 108: 8030–8035. https://doi.org/10.1073/pnas.1016088108

Kimura I., Ozawa K., Inoue D., Imamura T., Kimura K., i in. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4: 1829. https://doi.org/10.1038/ncomms2852

Kumari P., Inoue A., Chapman K., Lian P., Rosenbaum D.M. (2023). Molecular mechanism of fatty acid activation of FFAR1. Proceedings of the National Academy of Sciences 120: e2219569120. https://doi.org/10.1073/pnas.2219569120

Lagerström M.C., Schiöth H.B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews Drug Discovery 7: 339–357. https://doi.org/10.1038/nrd2518

Lee Y.J., Son S.E., Im D.S. (2024). Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. International Immunopharmacology 127: 111428. https://doi.org/10.1016/j.intimp.2023.111428

Lis J., Fichna J., Tarasiuk-Zawadzka A. (2025). The role of free fatty acid receptors activation in pancreatic disorders. Molecular Aspects of Medicine 104: 101386. https://doi.org/10.1016/j.mam.2025.101386

Loona D.P.S., Das B., Kaur R., Kumar R., Yadav A.K. (2023). Free Fatty Acid Receptors (FFARs): Emerging Therapeutic Targets for the Management of Diabetes Mellitus. Current Medicinal Chemistry 30: 3404–3440. https://doi.org/10.2174/0929867329666220927113614

Melhem H., Kaya B., Ayata C.K., Hruz P., Niess J.H. (2019). Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells 8: 450. https://doi.org/10.3390/cells8050450

Milligan G., Alvarez-Curto E., Hudson B.D., Prihandoko R., Tobin A.B. (2017). FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends in Pharmacological Sciences 38: 809–821. https://doi.org/10.1016/j.tips.2017.06.006

Rady B., Liu J., Huang H., Bakaj I., Qi J., i in. (2022). A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Frontiers in Endocrinology 13: 1061688. https://doi.org/10.3389/fendo.2022.1061688

Raptis D.A., Limani P., Jang J.H., Ungethüm U., Tschuor C., i in. (2014). GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. Journal of Hepatology 60: 625–632. https://doi.org/10.1016/j.jhep.2013.11.006

Senatorov I.S., Moniri N.H. (2018). The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochemical Pharmacology 150: 170–180. https://doi.org/10.1016/j.bcp.2018.02.011

Talukdar S., Olefsky J.M., Osborn O. (2011). Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends in Pharmacological Sciences 32: 543–550. https://doi.org/10.1016/j.tips.2011.04.004

Tan J.K., McKenzie C., Mariño E., Macia L., Mackay C.R. (2017). Metabolite-Sensing G Protein-Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology 35: 371–402. https://doi.org/10.1146/annurev-immunol-051116-052235

Yamamoto Y., Narumi K., Yamagishi N., Yonejima Y., Iseki K., i in. (2025). HYA ameliorated postprandial hyperglycemia in type 1 diabetes model rats with bolus insulin treatment. Acta Diabetologica 62: 1337–1345. https://doi.org/10.1007/s00592-025-02459-6

Yang Y.M., Kuen D.S., Chung Y., Kurose H., Kim S.G. (2020). Ga12/13 signaling in metabolic diseases. Experimental & Molecular Medicine 52: 896–910. https://doi.org/10.1038/s12276-020-0454-5

Yu F., Zong B., Ji L., Sun P., Jia D., i in. (2024). Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. International Journal of Molecular Sciences 25: 7853. https://doi.org/10.3390/ijms25147853

KOSMOS

Downloads

  • PDF (Język Polski)

Published

2025-03-30

Issue

Vol. 74 No. 1 (345) (2025): Varia

Section

Articles

License

Copyright (c) 2025 KOSMOS

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stats

Number of views and downloads: 66
Number of citations: 0

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop