Skutki zimnej wiosny dla tropikalnego sorgo
DOI:
https://doi.org/10.12775/KOSMOS.2025.011Słowa kluczowe
Sorghum bicolor L. Moench, stres chłodu, reakcja na stres, temperatury suboptymalne, tempo kiełkowania, wschodyAbstrakt
Sorgo dwubarwne (Sorghum bicolor L. Moench), gatunek pochodzący z tropikalnych regionów świata jest często narażone na działania niskich temperatur w klimacie umiarkowanym Europy, w tym w Polsce, szczególnie na początku okresu wegetacyjnego, co ogranicza jego uprawę i wysokość plonów. Jednak z uwagi na zdolność tolerowania długotrwałych niedoborów wody oraz wszechstronne zastosowanie (cele konsumpcyjne, pasza, biogaz), sorgo wydaje się być idealną alternatywą dla innych zbóż (np. kukurydzy) do uprawy na terenach z predyspozycją do występowania suszy. W pracy zostały przedstawione skutki działania niskiej temperatury na wzrost i rozwój sorgo po kątem analizy morfologii, fizjologii, anatomii oraz badań molekularnych. Omówione zostały również konsekwencje chłodu, który wystąpił w stadium młodocianej siewki, w trakcie tzw. „zimnej wiosny” dla późniejszych etapów rozwoju roślin sorgo, będących w fazie kwitnienie i zawiązywania nasion. Dodatkowo zostały nakreślone perspektywy dla hodowców poszukujących nowych źródeł odporności przy tworzeniu odmian sorgo o ulepszonej tolerancji na stres niskiej temperatury.
Bibliografia
Anda, A., Pinter, L., 1994. Sorghum Germination and Development as Influenced by Soil Temperature and Water Content. Agronomy Journal, 86: 621–624. https://doi.org/10.2134/agronj1994.00021962008600040008x
Anil Kumar, S., Hima Kumari, P., Nagaraju, M., Sudhakar Reddy, P., Durga Dheeraj, T. i in, 2022. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. Frontiers in Plant Science, 13: 13:965530. https://doi.org/10.3389/fpls.2022.965530
Antony, R.M., Kirkham, M.B., Todd, T.C., Bean, S.R., D. Wilson, J. i in, 2019. Low-temperature tolerance of maize and sorghum seedlings grown under the same environmental conditions. Journal of Crop Improvement, 33: 287–305. https://doi.org/10.1080/1542 7528.2019.1579139
Badiani, M., Paolacci, A.R., Fusari, A., D’Ovidio, R., Scandalios, J.G. i in, 1997. Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation. Journal of Plant Physiology, 151: 409–421. https://doi.org/10.1016/S0176-1617(97)80005-3
Balota, M., Payne, W.A., Veeragoni, S.K., Stewart, B.A., Rosenow, D.T., 2010. Respiration and Its Relationship to Germination, Emergence, and Early Growth Under Cool Temperatures in Sorghum. Crop Science, 50: 1414–1422. https://doi.org/10.2135/cropsci2009.08.0448
Bekele, W.A., Fiedler, K., Shiringani, A., Schnaubelt, D., Windpassinger, S. i in, 2014. Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant, Cell & Environment, 37: 707–723. https://doi.org/10.1111/pce.1218
Bilska, A., Sowiński, P., 2010. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann. Bot., 106: 675–686. https://doi.org/10.1093/aob/mcq169
Burow, G., Burke, J.J., Xin, Z., Franks, C.D., 2011. Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding, 28: 391–402. https://doi.org/10.1007/s11032010-9491-4
Casto, A.L., Murphy, K.M., Gehan, M.A., 2021. Coping with cold: Sorghum cold stress from germination to maturity. Crop Science, 61: 3894–3907. https://doi.org/10.1002/csc2.20609
Chopra, R., Burow, G., Hayes, C., Emendack, Y., Xin, Z. i in, 2015. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genomics, 16: 1040. https://doi.org/10.1186/s12864-015-2268-8
Cisse, N.D., Ejeta, G., 2003. Genetic Variation and Relationships among Seedling Vigor Traits in Sorghum. Crop Science, 43: 824–828. https://doi.org/10.2135/cropsci2003.8240
Clayton, W.D., 1961. Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum Adans (Gramineae). Taxon, 10: 242–243. https://doi.org/10.2307/1216338
Cui, H., Chen, J., Liu, M., Zhang, H., Zhang, S. i in, 2022. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [Sorghum bicolor (L.) Moench]. International Journal of Molecular Sciences, 23: https://doi.org/10.3390/ijms23105571
Dillon, S.L., Lawrence, P.K., Henry, R.J., Price, H.J., 2007. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Systematics and Evolution, 268: 29–43. https://doi.org/10.1007/s00606-007-0571-9
Emendack, Y., Sanchez, J., Hayes, C., Nesbitt, M., Laza, H. i in, 2021. Seed-to-seed earlyseason cold resiliency in sorghum. Scientific Reports, 11: 7801. https://doi.org/10.1038/s41598-021-87450-1
Ercoli, L., Mariotti, M., Masoni, A., Arduini, I., 2004. Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 21: 93–103. https://doi.org/10.1016/S11610301(03)00093-5
Evert, R.F., Russin, W.A., Bosabalidis, M., 1996. Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. International Journal of Plant Sciences, 157: 247–261. https://doi.org/10.1086/297344
Franks, C.D., Burow, G., Burke, J., 2006. A Comparison of U.S. and Chinese Sorghum Germplasm for Early Season Cold Tolerance. Crop Science, 46: 1371–1376. https://doi.org/10.2135/cropsci2005.08-0279
Knoll, J., Ejeta, G., 2008. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics, 116: 541–553. https://doi.org/10.1007/s00122-007-0689-8
Knoll, J., Gunaratna, N., Ejeta, G., 2008. QTL analysis of early-season cold tolerance in sorghum. Theoretical and Applied Genetics, 116: 577–587. https://doi.org/10.1007/s00122-007-0692-0
Maheshwari, P., Kummari, D., Palakolanu, S.R., Nagasai Tejaswi, U., Nagaraju, M. i in, 2019. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLOS ONE, 14: e0222203. https://doi.org/10.1371/journal.pone.0222203
Major, D.J., Hamman, W.M., Rood, S.B., 1982. Effects of short-duration chilling temperature exposure on growth and development of sorghum. Field Crops Research, 5: 129–136. https://doi.org/10.1016/03784290(82)90013-2
Marla, S.R., Shiva, S., Welti, R., Liu, S., Burke, J.J. in, 2017. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums. The Plant Genome, 10: plantgenome2017.2003.0025. https://doi.org/10.3835/plantgenome2017.03.0025
Maulana, F., Tesso, T.T., 2013. Cold Temperature Episode at Seedling and Flowering Stages Reduces Growth and Yield Components in Sorghum. Crop Science, 53: 564–574. https://doi.org/10.2135/cropsci2011.12.0649
Ortiz, D., Hu, J., Salas Fernandez, M.G., 2017. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. Journal of Experimental Botany, 68: 4545–4557. https://doi.org/10.1093/jxb/erx276
Parra-Londono, S., Fiedler, K., Kavka, M., Samans, B., Wieckhorst, S. i in, 2018. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theoretical and Applied Genetics, 131: 581–595. https://doi.org/10.1007/s00122-017-3021-2
Rutayisire, A., Lubadde, G., Mukayiranga, A., Edema, R., 2021. Response of Sorghum to Cold Stress at Early Developmental Stage. International Journal of Agronomy, 2021: 8875205. https://doi.org/10.1155/2021/8875205
Salas Fernandez, M.G., Schoenbaum, G.R., Goggi, A.S., 2014. Novel Germplasm and Screening Methods for Early Cold Tolerance in Sorghum. Crop Science, 54: 2631–2638. https://doi.org/10.2135/cropsci2014.01.0025
Taylor, A.O., Craig, A.S., 1971. Plants under Climatic Stress II. Low Temperature, High Light Effects on Chloroplast Ultrastructure. Plant Physiology, 47: 719–725. https://doi.org/10.1104/pp.47.5.719
Tiryaki, I., Andrews, D.J., 2001. Germination and Seedling Cold Tolerance in Sorghum. Agronomy Journal, 93: 1391–1397. https://doi.org/10.2134/agronj2001.1391
Venkateswaran, K., Sivaraj, N., Pandravada, S.R., Reddy, M.T., Babu, B.S., 2019. Chapter 3 – Classification, Distribution and Biology, w: Aruna C., Visarada K.B.R.S., Bhat B.V., Tonapi V.A. (Red.), Breeding Sorghum for Diverse End Uses. Woodhead Publishing, s. 33–60. https://doi.org/10.1016/B978-0-08101879-8.00003-6
Vera-Hernández, P.F., Mendoza Onofre, L.E., Rosas Cárdenas, F.d.F., 2023. Responses of sorghum to cold stress: A review focused on molecular breeding. Frontiers in Plant Science, 14: https://doi.org/10.3389/fpls.2023.1124335
Vera-Hernández, P.F., Ortega-Ramírez, M.A., Martínez Núñez, M., Ruiz-Rivas, M., Rosas-Cárdenas, F.F., 2018. Proline as a probable biomarker of cold stress tolerance in sorghum (Sorghum bicolor). Mexican Journal of Biotechnology, 3: 77–86. https://doi.org/10.29267/mxjb.2018.3.3.77
Wasylikowa, K., Dahlberg, J., 1999. Sorghum in the Economy of the Early Neolithic Nomadic Tribes at Nabta Playa, Southern Egypt, w: van der Veen M. (Red.), The Exploitation of Plant Resources in Ancient Africa. Springer, Boston, MA, s. 11–31. https://doi.org/10.1007/978-1-4757-6730-8_2
Winchell, F., Stevens, C.J., Murphy, C., Champion, L., Fuller, D., 2017. Evidence for Sorghum Domestication in Fourth Millennium BC Eastern Sudan: Spikelet Morphology from Ceramic Impressions of the Butana Group. Current Anthropology, 58: 673–683. https://doi.org/10.1086/693898
Windpassinger, S., Friedt, W., Deppé, I., Werner, C., Snowdon, R. i in, 2017. Towards Enhancement of Early-Stage Chilling Tolerance and Root Development in Sorghum F1 Hybrids. Journal of Agronomy and Crop Science, 203: 146–160. https://doi.org/10.1111/jac.12171
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2026 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 24
Liczba cytowań: 0