Bioprospekcja enzymów w rolnictwie regeneracyjnym
DOI:
https://doi.org/10.12775/KOSMOS.2025.015Słowa kluczowe
agrokultura regeneracyjna, bioprospekcja, enzymy, rolnictwo zrównoważoneAbstrakt
Rolnictwo mierzy się z ogromnym wyzwaniem wyżywienia stale rosnącej światowej ludzkiej populacji. Obecnie wykorzystywane praktyki rolnicze zwiększające wydajność w rolnictwie mają jednocześnie znaczny negatywny wpływ na środowisko naturalne. Rozwiązaniem tego problemu może okazać się rolnictwo regeneracyjne, które opiera się na bardziej zrównoważonych środowiskowo metodach. Jedną z praktyk alternatywnego podejścia jest wykorzystanie enzymów i produkujących je mikroorganizmów, które mają potencjał zastąpić lub zmniejszyć zużycie środków chemicznych nieprzyjaznych dla środowiska bądź usuwanie zanieczyszczeń wprowadzonych do ekosystemu w wyniku konwencjonalnych działań rolniczych. Procesem odkrywania nowych białek i organizmów mających zastosowanie w różnych sektorach działalności człowieka, w tym w rolnictwie, zajmuje się bioprospekcja, która jest istotnym narzędziem w rozwoju rolnictwa regeneracyjnego.
Bibliografia
Anastasi, A., Varese, G.C., Voyron, S., Scannerini, S., Marchisio, V.F., 2004. Characterization of Fungal Biodiversity In Compost and Vermicompost. Compost Science & Utilization 12 (2), 185–191. https://doi.org/10.1080/1065657X.2004.10702179.
Aydinalp, C., Cresser, M.S., 2008. The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural & Environmental Sciences 3 (5), 672–676.
Campdelacreu Rocabruna, P., Domene, X., Preece C., Fernández-Martínez, M., Maspons J. i in. 2024. Effect of climate, crop, and management on soil phosphatase activity in croplands: A global investigation and relationships with crop yield. European Journal of Agronomy 161, 127358. https://doi.org/10.1016/j.eja.2024.127358.
Díaz-Rodríguez, A.M., Salcedo Gastelum, L.A., Félix Pablos, C.M., Parra-Cota F.I., Santoyo, G. i in., 2021. The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. Frontiers in Sustainable Food Systems 4 – 2020. https://doi.org/10.3389/fsufs.2020.614739.
Dirzo, R., Raven, P.H., 2003. Global State of Biodiversity and Loss. Annual Review of Environment and Resources 28 (1), 137167. https://doi.org/10.1146/annurev.energy.28.050302.105532.
FAO, 2023. Land use statistics and indicators 2000–2021. Global, regional and country trends.
FAOSTAT Analytical Briefs Series No. 71. Rome. FAO. https://doi.org/10.4060/ cc6907en.
FAO, 2024. Greenhouse gas emissions from agrifood systems – Global, regional and country trends, 2000–2022.
FAOSTAT Analytical Brief Series, No. 94. Rome. FAO. FAO, 2024. Inorganic fertilizers – 2002–2022.
FAOSTAT Analytical Briefs, No. 90. Rome. FAO. https://doi.org/10.4060/cd1485en.
Filippelli, G.M., 2008. The Global Phosphorus Cycle: Past, Present, and Future. Elements 4 (2), 89–95. https://doi.org/10.2113/GSELEMENTS.4.2.89.
Gałązka, A., Jankiewicz U., Orzechowski, S., 2025. The Role of Ligninolytic Enzymes in Sustainable Agriculture: Applications and Challenges. Agronomy 15 (2), 451. https://doi.org/10.3390/agronomy15020451.
Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., Girdhar, M., 2018. Glyphosate Toxicity for Animals. Environmental Chemistry Letters 16 (2), 401–426. https://doi.org/10.1007/s10311-017-0689-0.
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrance, D. i in., 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327 (5967), 812–818. https://doi.org/10.1126/science.1185383.
Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H-S. i in., 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206, 131–140. https://doi.org/10.1016/j.micres.2017.08.016.
Gunjal, A.B., Waghmode, M.S., Patil, N.N., Nawani, N.N., 2019. Significance of soil enzymes in agriculture, w: Annepu, S.K., Arya, P., Barh, A., Bhan, C., Bhatt P. (Red.) i in., Smart Bioremediation Technologies. Academic Press, s. 159–168. https://doi.org/10.1016/B978-0-12-818307-6.00009-3.
Hoondal, G.S., Tiwari, R.P., Tewari R., Dahiya N., Beg, Q., 2002. Microbial Alkaline Pectinases and Their Industrial Applications: a review. Applied Microbiology and Biotechnology 59 (4), 409–418. https://doi.org/10.1007/s00253-002-1061-1.
Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J. i in., 2020. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nature Reviews Earth & Environment 1 (7), 366–381. https://doi.org/10.1038/s43017-020-0061-y.
Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J. i in., 2020. Laccase Properties, Physiological Functions, and Evolution. International Journal of Molecular Sciences 21 (3), 966. https://doi.org/10.3390/ijms21030966.
Jayani, R.S., Saxena, S., Gupta, R., 2005. Microbial Pectinolytic Enzymes: a review. Process Biochemistry 40 (9), 2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026.
Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R., 2001. Applications of pectinases in the commercial sector: a review. Bioresource Technology 77 (3), 215–227. https://doi.org/10.1016/S0960-8524(00)00118-8.
Krajewski, P., 2023. Land grabbing and bioprospecting in the perspective of the right to own environmental resources. Studia Iuridica Toruniensia 32 (1), 119–140. https://doi.org/10.12775/SIT.2023.006.
Luo, X., Elrys, A.S., Zhang, L., Ibrahim, M.M., Liu, Y. i in., 2024. The global fate of inorganic phosphorus fertilizers added to terrestrial ecosystems. One Earth 7 (8), 1402–1413. https://doi.org/10.1016/j.oneear.2024.07.002.
Millán, J.L., 2006. Alkaline Phosphatases: Structure, Substrate Specificity and Functional Relatedness to Other Members of a Large Superfamily of Enzymes. Purinergic Signalling 2 (2), 335–341. https://doi.org/10.1007/s11302-005-5435-6.
Mullu, D., 2016. A Review on the Effect of Habitat Fragmentation on Ecosystem. Journal of Natural Sciences Research 6 (15).
Nellemann, C., MacDevette, M., Manders, T., Eickhout, B., Svihus, B., Prins, A. i in., 2009. The environmental food crisis – The environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal.
Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu K.L., Ratanakhanokchai, K., 2013. Present and Potential Applications of Cellulases in Agriculture, Biotechnology, and Bioenergy. Folia Microbiologica 58 (2), 163–176. https://doi.org/10.1007/s12223-012-0184-8.
Piotrowska-Długosz, A., 2019. Significance of Enzymes and Their Application in Agriculture, w: Husain, Q., Ullah, M.F. (Red), Biocatalysis: Enzymatic Basics and Applications. Springer Cham, s. 277–308. https://doi.org/10.1007/978-3-030-25023-2_14.
Polak, J., Jarosz-Wilkołazka, A., 2007. Laccasemediated reactions – Mechanism and biotechnology applications. Biotechnologia 4, 82–94.
Ruiz-Herrera, J., 1992. Fungal cell wall: structure, synthesis, and assembly. CRC Press.
Saavedra, D.E.M., Baltar, F., 2025. Multifunctionality of alkaline phosphatase in ecology and biotechnology. Current Opinion in Biotechnology 91, 103229. https://doi.org/10.1016/j.copbio.2024.103229.
Sharma, A., Arya, S.K., Singh, J., Kapoor, B., Bhatti, J.S. i in., 2023. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnology and Genetic Engineering Reviews 40 (1), 310–340. https://doi.org/10.1080/02648725.2023.2183593.
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. SpringerPlus 2 (1), 587. https://doi.org/10.1186/2193-1801-2-587.
Singh, S., Kang, S.H., Mulchandani, A., Chen, W., 2008. Bioremediation: environmental cleanup through pathway engineering. Current Opinion in Biotechnology, 19 (5), 437–444. https://doi.org/10.1016/j.copbio.2008.07.012.
Stintzi, A., Heitz, T., Prasad, V., WiedemannMerdinoglu, S., Kauffmann, S. i in., 1993. Plant ‘Pathogenesis-Related’ Proteins and Their Role in Defense against Pathogens. Biochimie 75 (8), 687–706. https://doi.org/10.1016/0300-9084(93)90100-7.
Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108 (50), 20260–20264. https://doi.org/10.1073/pnas.1116437108.
United Nations (2024). World Population Prospects 2024: Summary of Results. UN DESA/POP/2024/TR/NO. 9. New York: United Nations.
United Nations Department of Economic and Social Affairs, Population Division (2021). Global Population Growth and Sustainable Development. UN DESA/POP/2021/TR/ NO. 2. United Nations Publication.
Wesołowska-Trojanowska, M., Targoński, Z., 2014. Celulazy – właściwości, otrzymywanie i zastosowanie. Engineering Sciences And Technologies 2 (13), 104–121. https://doi.org/10.15611/nit.2014.2.10.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2026 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 43
Liczba cytowań: 0