Halotolerancyjne bakterie jako sprzymierzeńcy roślin w walce ze stresem zasolenia gleby
DOI:
https://doi.org/10.12775/KOSMOS.2025.014Słowa kluczowe
zasolenie gleby, bioremediacja in situ, bakterie halotolerancyjne, osmoprotektanty, stres osmotyczny, poprawa jakości gleby, mikroorganizmy gleboweAbstrakt
Zasolenie gleb stanowi jedno z najpoważniejszych wyzwań współczesnego rolnictwa, prowadząc do spadku produktywności upraw i degradacji środowiska glebowego. Skutki zasolenia obejmują zaburzenia gospodarki wodno-jonowej roślin, stres osmotyczny oraz ograniczenie dostępności składników pokarmowych. W odpowiedzi na te problemy rośnie zainteresowanie biologicznymi metodami remediacji gleb (bioremediacji), zwłaszcza tych związanych z wykorzystaniem mikroorganizmów halotolerancyjnych. Mikroorganizmy te, zdolne są do funkcjonowania w warunkach zasolenia, m. in dzięki syntetyzowaniu osmoprotektantów - związków wspomagających odporność roślin na stres solny oraz poprawiających właściwości fizykochemiczne i mikrobiologiczne gleby. W niniejszej pracy omówiono wpływ bakterii halotolerancyjnych na dostępność makro- i mikroelementów, formowanie biofilmu oraz ochronę roślin przed toksycznością nadmiernej zawartości rozpuszczonych jonów wywołujących zasolenie gleby. Przedstawione badania wskazują na duży potencjał wdrożeniowy mikrobiologicznych strategii remediacji jako efektywnego, przyjaznego środowisku i opłacalnego ekonomicznie rozwiązania wspierającego uprawy prowadzone w warunkach stresu solnego.
Bibliografia
Abed, R. M., Al-Kharusi, S., Al-Hinai, M., 2015. Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. International Biodeterioration & Biodegradation, 98, 43–52. https://doi.org/10.1016/j.ibiod.2014.11.018
AbuQamar, S. F., El-Saadony, M. T., Saad, A. M., Desoky, E. M., Elrys, A. S., i in., 2024. Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture – A review. Plant Stress, 12, 100482. https://doi.org/10.1016/j.stress.2024.100482
Ahsan, Y., Qurashi, A.W., Liaqat, I., Latif, A., Afzaal, M., i in., 2023. Efficacy of rice husk and halophilic bacterial biofilms in the treatment of saline water. Journal of Basic Microbiology 63, 855–867. https://doi.org/10.1002/jobm.202300062b
Al-Awad, K., 2018. The effect of biological exudates on the mechanical properties of granular soil. Ph.D. Dissertation, Cardiff University. Ambreen, S., Athar, H.-U.-R., Khan, A., Zafar, Z.U., Ayyaz, A., i in., 2021. Seed priming with proline improved photosystem II efficiency and growth of wheat (Triticum aestivum L.). BMC Plant Biology 21, 502. https://doi.org/10.1186/s12870-021-03273-2
Arora, S., Vanza, M.J., Mehta, R., Bhuva, C., Patel, P.N., 2014. Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research 8, 3070-3080. https://doi.org/10.5897/AJMR2014.6960
Aparicio, J. D., Raimondo, E. E., Saez, J. M., Costa-Gutierrez, S. B., Álvarez, i in., 2022. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering, 10(2), 107141. https://doi.org/10.1016/j.jece.2022.107141
Chizhevskaya, E.P., Baganova, M. E., Keleinikova, O.V., Yuzikhin, O.S., Zaplatkin, A.N., i in., 2022. Endophytes from halotolerant plants aimed to overcome salinity and drought. Plants 11, 2992. https://doi.org/10.3390/plants11212992
Cirillo, V., Masin, R., Maggio, A., Zanin, G., 2018. Crop-weed interactions in saline environments. European Journal of Agronomy, 99, 51–61. https://doi.org/10.1016/j.eja.2018.06.009
du Jardin, P., 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Elbein, A.D., Pan, Y.T., Pastuszak, I., 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R. https://doi.org/10.1093/glycob/cwg047
Etesami, H., Beattie, G. A., 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 9, 148. https://doi.org/10.3389/fmicb.2018.00148
Gliniak, M., Sobczyk, W., 2013. Antropogeniczne procesy zasolenia gleb. J. Educ. Technol. Comput. Sci. 7, 271–277. https://journals.ur.edu.pl/jetacomps/article/view/6844
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., i in., 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812–818. https://doi.org/10.1126/science.1185383
Goszcz, A., Furtak, K., Stasiuk, R., Wójto- wicz, J., Musiałowski, i in. ., 2025. Bacterial osmoprotectants – a way to survive in saline conditions and potential crop allies. FEMS Microbiology Reviews 49, https://doi.org/10.1093/femsre/fuaf020
Guo, Y.-S., Furrer, J. M., Kadilak, A. L., Hinestroza, H. F., Gage, D. J., i in. (2018). Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Frontiers in Environmental Science and Engineering China, 6. https://doi.org/10.3389/fenvs.2018.00093
Hulisz, P., 2007. Wybrane aspekty badań gleb zasolonych w Polsce. Stow. Oświat. Pol. http://www.sop.torun.pl (dostęp 17 lipca 2025)
Hulisz, P., Piernik, A., Mantilla-Contreras, J., Elvisto, T., 2016. Main driving factors for seacoast vegetation in the southern and eastern Baltic. Wetlands 36, 909–919. https://doi.org/10.1007/s13157-016-0803-2
Hulisz P., 2016. Costal Marsh soils in Poland: characteristics and problems of classification. Soil Science Annual, 67, 1, 37–44, https://doi.org/10.1515/ssa-2016-0006
Ji, X., Tang, J., Zhang, J., 2022. Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants 11, 2381. https://doi.org/10.3390/plants11182381
Kalantary, R. R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F. R., i in ., 2014. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. Journal of Environmental Health Science and Engineering, 12, 143. https://doi.org/10.1186/s40201-014-0143-1
Kalwasińska, A., Hulisz, P., Szabó, A., Binod Kumar, S., Michalski, A., i in., 2023. Technogenic soil salinisation, vegetation, and management shape microbial abundance, diversity, and activity. Science of The Total Environment, 905, 167380. https://doi.org/10.1016/j.scitotenv.2023.167380
Kaya, C., Tuna, A.L., Yokaş, I., 2009. The role of plant hormones in plants under salinity stress. W: Ashraf, M. Ozturk, H. Athar (Red.), Salinity and Water Stress. Tasks for Vegetation Sciences, vol. 44. Springer, Dordrecht, s. 5–27. https://doi.org/10.1007/978-1-40209065-3_5
Kido, É.A., Ferreira-Neto, J.R.C., da Silva, M.D., 2019. Osmoprotectant-related genes in plants under abiotic stress: expression dynamics, in silico genome mapping, and biotechnology, w: Hossain, M. A., Kumar, V., Burritt, D. J., Fujita, M., Mäkelä, P. S. A. (Red.), Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives. Springer, Berlin, s. 1–40. https://doi.org/10.1007/978-3-030-27423-8_1
Klouche, F., Bendani, K., Benamar, A., Missoum, H., Maliki, M., i in., 2019 . Electrokinetic restoration of local saline soil. Materials Today: Proceedings, 22, 64–68. https://doi.org/10.1016/j.matpr.2019.08.082
Koul, B., Taak, P., 2018. Soil remediation through microbes, w: Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_6
Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., Devarajan, R. 2024. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2, 154–171. https://doi.org/10.1016/j.wmb.2024.07.005
Litalien, A., Zeeb, B., 2020. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235
Lebrun, M., Száková, J., Drábek, O., Tejnecký, V., Hough, i in., 2023. EDTA as a legacy soil chelatant: A comparative study to a more environmentally sensitive alternative for metal removal by Pistia stratiotes L. Environmental Science and Pollution Research International, 30(29), 74314. https://doi.org/10.1007/s11356-023-27537-6
Lee, K. C., Archer, S. D., Kansour, M. K., AlMailem, D. M., 2024 . Bioremediation of oily hypersaline soil via autochthonous bioaugmentation with halophilic bacteria and archaea. Science of The Total Environment, 922, 171279. https://doi.org/10.1016/j.scitotenv.2024.171279
Liu, J., Wu, L., Gong, L., Wu, Y., Tanentzap, A. J., 2023. Phototrophic biofilms transform soildissolved organic matter similarly despite compositional and environmental differences. Environmental Science & Technology 57, 4679–4689. https://doi.org/10.1021/acs.est.2c08541
Mäkelä, P., Kontturi, M., Pehu, E., & Somersalo, S. 1999. Photosynthetic response of drought‐ and salt‐stressed tomato and turnip rape plants to foliar‐applied glycinebetaine. Physiologia Plantarum, 105, 45–50. https://doi.org/10.1034/j.1399-3054.1999.105108.x
Misra, N., Saxena, P., 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science 177, 181–189. https://doi.org/10.1016/j.plantsci.2009.05.007
Ludwiczak, A., Osiak, M., Piernik, A., 2021. Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy 11(3), 435. https://doi.org/10.3390/agronomy11030435
Meng, X., Zhou, J., Sui, N., 2018. Mechanisms of salt tolerance in halophytes: current understanding and recent advances. Open Life Sciences 13, 149. https://doi.org/10.1515/biol-2018-0020
Michael-Igolima, U., Abbey, S. J., Ifelebuegu, A. O. 2022. A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 9, 100319. https://doi.org/10.1016/j.envadv.2022.100319
Mishra, P.K., Joshi, S., Gangola, S., Khati, P., Bisht, J.K., i in., 2020. Psychrotolerant microbes: characterization, conservation, strain improvements, mass production, and commercialization, w: Singh, H., (Red.), Cold-Adapted Microorganisms for Sustainable Crop Production. Springer, Singapore, s. 227–246. https://doi.org/10.1007/978-981-15-1902-4_12
Mohanavelu, A., Raghavendra Naganna, S., AlAnsari, N., 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture 11(12), 1196. https://doi.org/10.3390/agriculture11121196
Nadeem, M., Ali, M., Kubra, G., Fareed, A., Hasan, H., i in., 2020. Role of osmoprotectants in salinity tolerance in wheat. Climate Change and Food Security With Emphasis on Wheat, 93–106. https://doi.org/10.1016/B978-0-12-819527-7.00006-6
Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., Shinmyo, A., 1993. Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 101, 441–445. https://doi.org/10.1104/pp.101.1.441
Navarro-Torre, S., Ferrario, S., Caperta, A. D., Victorino, G., Bailly, M., i in., 2023. Halotolerant endophytes promote grapevine regrowth after salt-induced defoliation. Journal of Plant Interactions 18. https://doi.org/10.1080/17429145.2023.2215235
Oviedo, C., Rodríguez, J., 2003. EDTA: the chelating agent under environmental scrutiny. Química Nova 26, 901–905.
Panuszko, A., Bruździak, P., Kaczkowska, E., Stangret, J. 2016. General mechanism of osmolytes’ influence on protein stability irrespective of the type of osmolyte cosolvent. Journal of Physical Chemistry B, 120, 11159–11169. https://doi.org/10.1021/acs.jpcb.6b10119
Piernik, A., Hulisz, P., 2011. Soil-plant relations in inland and anthropogenic saline habitats. European Journal of Plant Science and Biotechnology 5, 37–43. Roberts, M. F., 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1, 5. https://doi.org/10.1186/1746-1448-1-5
Roy, D., Sleator, C., 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26(1), 49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x
Schiraldi, C., De Rosa, M., 2014. Mesophilic organisms, w: Drioli, E., Giorno, L. (Red.), Encyclopedia of Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3642-40872-4_1610-2
Sedlacek, P., Slaninova, E., Koller, M., Nebesarova, J., Marova, I., i in., 2019. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnology 49, 129–136. https://doi.org/10.1016/j.nbt.2018.10.005
Shaygan, M., Baumgartl, T. 2022. Reclamation of Salt-Affected Land: A Review. Soil Systems, 6, 61. https://doi.org/10.3390/soilsystems6030061
Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., García-Caparros, P., i in., 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115, 433–447. https://doi.org/10.1093/aob/mcu239
Sleator, R. D., Hill, C. 2002. Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 26(1), 49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x
Stavi, I., Thevs, N., Priori, S., 2021. Soil salinity and sodicity in drylands: a review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science 9, 712831. https://doi.org/10.3389/fenvs.2021.712831
Tang, H., Xiang, G., Xiao, W., Yang, Z., Zhao, B. 2024. Microbial mediated remediation of heavy metals toxicity: Mechanisms and future prospects. Frontiers in Plant Science, 15, 1420408. https://doi.org/10.3389/fpls. 2024.1420408
Torbaghan, M.E., Lakzian, A., Astaraei, A.R., Fotovat, A., Besharati, H., 2017. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. Journal of Soil Science and Plant Nutrition 17(4), 1058–1087. https://doi.org/10.4067/ S0718-95162017000400016
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & Ali, S. Z. 2016. Enhancement of drought stress tolerance in crops by plant growth-promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
Zheng, Y., Li, Z., Tan, Z., Liu, Y., Zhang, X., i in., 2025. Iron (II)-EDTA alleviate salinity injury through regulating ion balance in halophyte seashore paspalum. Grass Research 5, e002. https://doi.org/10.48130/grares-0024-0029
Yan, S., Chong, P., Zhao, M., 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. Plant Signal. Behav. 17(1), 2031782. https://doi.org/10.1080/15592324.2022.2031782
Yamada, N., Promden, W., Yamane, K., Tamagake, H., Hibino, T., i in., 2009. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions. Journal of Plant Physiology 166, 2058–2070. https://doi.org/10.1016/j.jplph.2009.06.016
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2026 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 14
Liczba cytowań: 0