Fitochemiczny fenomen – kwas rozmarynowy i jego potencjał
DOI:
https://doi.org/10.12775/KOSMOS.2025.025Słowa kluczowe
kultury roślinne in vitro, kwas rozmarynowy, medycyna, polifenole, przemysł spożywczy, rolnictwoAbstrakt
Kwas rozmarynowy (KR) jest naturalnym polifenolem obecnym w wielu roślinach z rodziny jasnotowatych (Lamiaceae), takich jak rozmaryn, szałwia, melisa czy mięta. Dzięki swojej złożonej strukturze chemicznej wykazuje szerokie spektrum działania biologicznego. W artykule przedstawiono przegląd literatury dotyczącej zastosowań KR w medycynie, kosmetyce oraz innych dziedzinach, w tym przemysłowych. Szczególną uwagę poświęcono jego właściwościom przeciwzapalnym, przeciwutleniającym, neuroprotekcyjnym, przeciwnowotworowym, przeciwbakteryjnym i immunomodulującym. Pokazano potencjalne zastosowanie KR w medycynie (terapie wielu chorób), w kosmetologii (zastosowanie w pielęgnacji skóry oraz w ochronie przeciwsłonecznej), w przemyśle spożywczym (naturalny konserwant) i w rolnictwie (biopestycyd i biostymulator). Artykuł omawia również nowoczesne metody biotechnologicznej produkcji KR, w tym kultury komórkowe, korzenie transformowane oraz biosyntezę mikrobiologiczną. Wyniki badań przedklinicznych są bardzo obiecujące, jednak potrzeba dalszych badań nad skutecznością i bezpieczeństwem stosowania KR u ludzi. Związek ten ma potencjał, by stać się ważnym składnikiem terapii wspomagających, suplementów diety, kosmetyków i ekologicznych środków ochrony roślin.
Bibliografia
Alagawany, M., Abd El-Hack, M.E., Farag, M.R., Gopi, M., Karthik, K., i in. 2017. Rosmarinic acid: modes of action, medicinal values and health benefits. Animal Health Research Reviews, 182, 167–176. https://doi.org/10.1017/s1466252317000081
Bacenetti, J., Cavaliere, A., Falcone, G., Giovenzana, V., Banterle, A., i in., 2018. Shelf life extension as solution for environmental impact mitigation: A case study for bakery products. Science of the Total Environment, 627, 997–1007. https://doi.org/10.1016/j.scitotenv.2018.01.301
Balachander, G.J., Subramanian, S., Ilango, K. 2018. Rosmarinic acid attenuates hepatic steatosis by modulating ER stress and autophagy in oleic acid-induced HepG2 cells. RSC Advances, 847, 26656–26663. https://doi.org/10.1039/c8ra02849d
Bian, J., Wu, T., Zhou, Q., Xie, H., Chen, C., 2023. Silane-coupled chitosan-cyclodextrin/rosmarinic acid-zinc complex coating improves the osseointegration of titanium implants in high-glucose environments. Applied Surface Science, 638, 158015. https://doi.org/10.1016/j.apsusc.2023.158015
Brown, L. 2022. Acne and its management – an update. SA Pharmaceutical Journal, 894, 30–38.
Burkard, M., Piotrowsky, A., Leischner, C., Detert, K., Venturelli, S., i in., 2025. The Antiviral Activity of Polyphenols. Molecular Nutrition and Food Research, e70042. https://doi.org/10.1002/mnfr.70042
Cai, G., Lin, F., Wu, D., Lin, C., Chen, H., i in., 2022. Rosmarinic acid inhibits mitochondrial damage by alleviating unfolded protein response. Frontiers in Pharmacology, 13, 859978. https://doi.org/10.3389/fphar.2022.859978
Caliari, S.R., Burdick, J.A., 2016. A practical guide to hydrogels for cell culture. Nature Methods, 135, 405–414. https://doi.org/10.1038/nmeth.3839
Cândido, T.M., Ariede, M.B., Pinto, C.A.S.D.O., Lourenço, F.R., Rosado, C., i in., 2022. Prospecting in vitro antioxidant and photoprotective properties of rosmarinic acid in a sunscreen system developed by QbD containing octyl p-methoxycinnamate and bemotrizinol. Cosmetics, 92, 29. https://doi.org/10.3390/cosmetics9020029
Casanova, F., Estevinho, B.N., Santos, L., 2016. Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 297, 44–49. https://doi.org/10.1016/j.powtec.2016.04.014
Chajra, H., Nadim, M., Auriol, D., Schweikert, K., Lefevre, F., 2015. Combination of new multifunctional molecules for erythematotelangiectatic rosacea disorder. Clinical, Cosmetic and Investigational Dermatology, 501–510. https://doi.org/10.2147/ccid.s92326
Chhabra, P., Chauhan, G., Kumar, A., 2020. Augmented healing of full thickness chronic excision wound by rosmarinic acid loaded chitosan encapsulated graphene nanopockets. Drug Development and Industrial Pharmacy, 466, 878-888. https://doi.org/10.1080/03639045.2020.1762200
Chircov, C., Pîrvulescu, D.C., Bîrcă, A.C., Andronescu, E., Grumezescu, A.M., 2022. Magnetite microspheres for the controlled release of rosmarinic acid. Pharmaceutics, 1411, 2292. https://doi.org/10.3390/pharmaceutics14112292
Contardi, M., Lenzuni, M., Fiorentini, F., Summa, M., Bertorelli, R., i in., 2021. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics, 137, 999. https://doi.org/10.3390/pharmaceutics13070999
Cuevas-Durán, R.E., Medrano-Rodríguez, J.C., Sánchez-Aguilar, M., Soria-Castro, E., Rubio-Ruíz, M.E., i in., 2017. Extracts of Crataegus oxyacantha and Rosmarinus officinalis attenuate ischemic myocardial damage by decreasing oxidative stress and regulating the production of cardiac vasoactive agents. International Journal of Molecular Sciences, 1811, 2412. https://doi.org/10.3390/ijms18112412
Czerwińska, K., Radziejewska, I., 2024. Rosmarinic acid: A potential therapeutic agent in gastrointestinal cancer management – A review. International Journal of Molecular Sciences, 2521, 11704 https://doi.org/10.3390/ijms252111704
da Silva, S.B., Ferreira, D., Pintado, M., Sarmento, B., 2016. Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. International Journal of Biological Macromolecules, 84, 112–120. https://doi.org/10.1016/j.ijbiomac.2015.11.070
Dagostin, S., Formolo, T., Giovannini, O., Pertot, I., Schmitt, A., 2010. Salvia officinalis extract can protect grapevine against Plasmopara viticola. Plant Disease, 945, 575–580. https://doi.org/10.1094/pdis-94-5-0575
Del Bano, M.J., Lorente, J., Castillo, J., Benavente-García, O., Del Rio, J.A. i in., 2003. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of Agricultural and Food Chemistry, 51(15), 4247–4253. https://doi.org/10.1021/jf0300745
Duan, L., Rao, X., Sigdel, K. R., 2019. Regulation of inflammation in autoimmune disease. Journal of Immunology Research, 2019, 7403796. https://doi.org/10.1155/2019/7403796
Dunan, L., Malanga, T., Benhamou, S., Papaiconomou, N., Desneux, N., i in., 2023. Effects of essential oil-based formulation on biopesticide activity. Industrial Crops and Products, 202, 117006. https://doi.org/10.1016/j.indcrop.2023.117006
Ekambaram, S.P., Perumal, S.S., Balakrishnan, A., Marappan, N., Gajendran, S.S., i in., 2016. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Intercultural Ethnopharmacology, 54, 358. https://doi.org/10.5455/jice.20160906035020
El-Lakkany, N.M., El-Maadawy, W.H., El-Din, S.H.S., Hammam, O.A., Mohamed, S.H., i in., 2017. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis. Asian Pacific Journal of Tropical Medicine, 105, 444–453. https://doi.org/10.1016/j.apjtm.2017.05.012
Elebeedy, D., Elkhatib, W.F., Kandeil, A., Ghanem, A., Kutkat, O., i in., 2021. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Advances, 1147, 29267–29286. https://doi.org/10.1039/d1ra05268c
Faridzadeh, A., Salimi, Y., Ghasemirad, H., Kargar, M., Rashtchian, A., i in., 2022. Neuroprotective potential of aromatic herbs: rosemary, sage, and lavender. Frontiers in Neuroscience, 16, 909833. https://doi.org/10.3389/fnins.2022.909833
Fecka, I., Mazur, A., Cisowski, W., 2002. Rosmarinic acid, an important therapeutic component of some herbal crude drugs. Postępy Fitoterapii, 1–2: 20–25
Fiume, M.M., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., i in., 2018. Safety assessment of Rosmarinus officinalis rosemary-derived ingredients as used in cosmetics. International Journal of Toxicology, 373_suppl, 12S–50S. https://doi.org/10.1177/1091581818800020
Fletcher, R.S., Slimmon, T., Kott, L.S. 2010. Environmental factors affecting the accumulation of rosmarinic acid in spearmint Mentha spicata L. and peppermint Mentha piperita L.. The Open Agriculture Journal, 41. https://doi.org/10.2174/1874331501004010010
Freitas, L.P. 2021. Analysis of antifungal plant extracts against phytopathogenic fungi. Master's thesis, Universidade do Minho Portugal.
Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., i in., 2018. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 83, 308–316. https://doi.org/10.1016/j.foodhyd.2018.04.052
Ghasemzadeh Rahbardar, M., Hosseinzadeh, H., 2020. Effects of rosmarinic acid on nervous system disorders: an updated review. Naunyn-Schmiedeberg's Archives of Pharmacology, 39310, 1779–1795. https://doi.org/10.1007/s00210-020-01935-w
Ghobril, C., Grinstaff, M.W., 2015. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chemical Society Reviews, 447, 1820–1835. https://doi.org/10.1039/c4cs00332b
Gonçalves S., Mansinhos I., Rodríguez-Solana R., Efrén Pérez-Santín E., Coelho N., i in., 2019. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Industrial Crop and Products 137:214–220. https://doi.org/10.1016/j.indcrop.2019.04.071
Grąbkowska, R., Krzemińska, M., Gaweda-Walerych, K., Kiss, A. K., Pluta, K., i in., 2025. Enhancement of Rosmarinic Acid Production in Hairy Root Cultures of Perovskia atriplicifolia Benth. International Journal of Molecular Sciences, 267, 3187. https://doi.org/10.3390/ijms26073187
Greff, B., Sáhó, A., Lakatos, E., Varga, L., 2023. Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants, 124, 706. https://doi.org/10.3390/plants12040706
Guan, H., Luo, W., Bao, B., Cao, Y., Cheng, F., i in., 2022. A comprehensive review of rosmarinic acid: from phytochemistry to pharmacology and its new insight. Molecules, 2710, 3292. https://doi.org/10.3390/molecules27103292
Guncheva, M., Todinova, S., Yancheva, D., Idakieva, K., 2020. Rosmarinic acid-conjugated hemocyanins: synthesis and stability. Journal of Thermal Analysis and Calorimetry, 142, 1903–1909. https://doi.org/10.1007/s10973-020-09738-0
Gupta, D., Sharma, R.R., Rashid, H., Bhat, A.M., Tanveer, M.A., i in., 2023. Rosmarinic acid alleviates ultraviolet‐mediated skin aging via attenuation of mitochondrial and ER stress responses. Experimental Dermatology, 326, 799–807. https://doi.org/10.1111/exd.14773
Han, J., Wang, D., Ye, L., Li, P., Hao, W., i in., 2017. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma. Frontiers in Pharmacology, 8, 456. https://doi.org/10.3389/fphar.2017.00456
Hao, W., Friedman, A., 2016. Mathematical model on Alzheimer’s disease. BMC Systems Biology, 10, 1–18. https://doi.org/10.1186/s12918-016-0348-2
Hitl, M., Kladar, N., Gavarić, N., Božin, B., 2021. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Medica, 8704, 273–282. https://doi.org/10.1055/a-1301-8648
Huang, J.Y., Hsu, T.W., Chen, Y.R., Kao, S.H., 2024. Rosmarinic acid potentiates cytotoxicity of cisplatin against colorectal cancer cells by enhancing apoptotic and ferroptosis. Life, 148, 1017 https://doi.org/10.3390/life14081017
Huang, S.S., Zheng, R.L. 2006. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Letters, 2392, 271–280. https://doi.org/10.1016/j.canlet.2005.08.025
Huerta-Madronal, M., Caro-Leon, J., Espinosa-Cano, E., Aguilar, M. R., Vázquez-Lasa, B., 2021. Chitosan–Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydrate Polymers, 273, 118619. https://doi.org/10.1016/j.carbpol.2021.118619
Hur, Y.G., Suh, C.H., Kim, S., Won, J., 2007. Rosmarinic acid induces apoptosis of activated T cells from rheumatoid arthritis patients via mitochondrial pathway. Journal of Clinical Immunology, 27, 36–45. https://doi.org/10.1007/s10875-006-9057-8
Hussein, A.S., Senosi, Y.A., Mahfouz, M.K., Arafa, M.M., Hassan, M.F. 2024. Epigenetic impact and ameliorative potential role of quercetin or rosemary extract on metalaxy or manganese chloride-induced toxicity via mitigation of microRNA, DNA methylation and regulation of MAPK phosphorylation in rats. Journal of Advanced Veterinary Research, 147, 1160–1167. https://doi.org/10.21608/bvmj.2017.30600
Jahanian, H., Kahkeshani, N., Sanei-Dehkordi, A., Isman, M. B., Saeedi, M., i in., 2024. Rosmarinus officinalis as a natural insecticide: a review. International Journal of Pest Management, 704, 818–863. https://doi.org/10.1080/09670874.2022.2046889
Jeong, M.J., Lim, D.S., Kim, S.O., Park, C., Choi, Y.H., i in., 2021. Effect of rosmarinic acid on differentiation and mineralization of MC3T3-E1 osteoblastic cells on titanium surface. Animal Cells and Systems, 251, 46–55. https://doi.org/10.1080/19768354.2021.1886987
Jheng, J.R., Hsieh, C.F., Chang, Y H., Ho, J.Y., Tang, W.F., i in., 2022. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. Journal of Microbiology, Immunology and Infection, 554, 598–610. https://doi.org/10.1016/j.jmii.2022.04.012
Kalvala, A.K., Kumar, A.V., Chayanika, G., Bhoomika, S., Rahul, K., i in., 2021. Rosmarinic acid and mitochondria. w: Marcos Roberto de Oliveira (red.) Mitochondrial Physiology and Vegetal Molecules pp. 209–231. Academic Press. https://doi.org/10.1016/b978-0-12-821562-3.00030-7
Kasamatsu, S., Takano, K., Aoki, M., Takahashi, Y., Suzuki, T., 2024. Rosemary extract and rosmarinic acid accelerate elastic fiber formation by increasing the expression of elastic fiber components in dermal fibroblasts. The Journal of Dermatology, 516, 816–826. https://doi.org/10.1111/1346-8138.17185
Khoshsokhan, F., Babalar, M., Salami, S. A., Sheikhakbari-Mehr, R., Mirjalili, M. H., 2022. Rosmarinic acid production in hairy root cultures of Salvia nemorosa L. Lamiaceae. Biocatalysis and Agricultural Biotechnology, 45, 102494. https://doi.org/10.1016/j.bcab.2022.102494
Kim, B. R., Jeong, Y. J., Kim, S., Kim, S. B., Lee, J., i in., 2025. Elicitor-mediated enhancement of rosmarinic acid biosynthesis in cell suspension cultures of Lavandula angustifolia and in vitro biological activities of cell extracts. Plant Physiology and Biochemistry, 109896. https://doi.org/10.1016/j.plaphy.2025.109896
Kim, G.D., Park, Y.S., Jin, Y.H., Park, C.S., 2015. Production and applications of rosmarinic acid and structurally related compounds. Applied Microbiology and Biotechnology, 99, 2083–2092. https://doi.org/10.1007/s00253-015-6395-6
Kim, H.J., Kim, T.H., Kang, K.C., Pyo, H.B., Jeong, H.H., 2010. Microencapsulation of rosmarinic acid using polycaprolactone and various surfactants. International Journal of Cosmetic Science, 323, 185–191. https://doi.org/10.1111/j.1468-2494.2010.00526.x
Kim, T.H., Bormate, K.J., Custodio, R.J.P., Cheong, J.H., Lee, B.K., i in., 2022. Involvement of the adenosine A1 receptor in the hypnotic effect of rosmarinic acid. Biomedicine and Pharmacotherapy, 146, 112483. https://doi.org/10.1016/j.biopha.2021.112483
Kłos, P., Chlubek, D., 2022. Plant-derived terpenoids: A promising tool in the fight against melanoma. Cancers, 143, 502. https://doi.org/10.3390/cancers14030502
Koch, W., Zagórska, J., Michalak-Tomczyk, M., Karav, S., Wawruszak, A., 2024. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules, 2917, 4234. https://doi.org/10.3390/molecules29174234
Kozłowska, W., Piątczak, E., Kolniak-Ostek, J., Kochan, E., Pencakowski, B., i in., 2024. Upscaling biomass production of rosmarinic acid-rich hairy root cultures of Agastache rugosa Fisch. i CA Mey. Kuntze. Plant Cell, Tissue and Organ Culture (PCTOC), 1562, 41. https://doi.org/10.1007/s11240-023-02626-z
Krszyna, K., Stoklosa, T., 2005. Czynnik indukowany przez hipoksje-1 [HIF-1]: Budowa, regulacja ekspresji, funkcja oraz rola w progresji nowotworów. Postępy Biologii Komórki, 32, 707–728.
Kumari, R., Vaid, P., 2024. Prospects of medicinal plants and plant compounds as anti-human herpes virus drugs. w: Akhtar N., Husen A., Dvibedi V., Rath SK., (Red.) Promising Antiviral Herbal and Medicinal Plants pp. 231-241. CRC Press. https://doi.org/10.1201/9781003329169-15
Kurkin, V.A., 2013. Phenylpropanoids as the biologically active compounds of the medicinal plants and phytopharmaceuticals. Advances in Biological Chemistry, 31, 26-28. https://doi.org/10.4236/abc.2013.31004
Lešnik, S., Furlan, V., Bren, U., 2021. Rosemary Rosmarinus officinalis L.: extraction techniques, analytical methods and health-promoting biological effects. Phytochemistry Reviews, 206, 1273–1328. https://doi.org/10.1007/s11101-021-09745-5
Lin, L., Dong, Y., Zhao, H., Wen, L., Yang, B., i in., 2011. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra MAXIM. HARA as inhibitors of tyrosinase and α-glucosidase. Food Chemistry, 1293, 884–889. https://doi.org/10.1016/j.foodchem.2011.05.039
Liu, M., Liu, S., Zhu, X., Sun, Y., Su, L., i in., 2022. Tanshinone IIA-loaded micelles functionalized with rosmarinic acid: a novel synergistic anti-inflammatory strategy for treatment of atherosclerosis. Journal of Pharmaceutical Sciences, 11110, 2827–2838. https://doi.org/10.1016/j.xphs.2022.05.007
Liu, M., Xiao, R., Li, X., Zhao, Y., Huang, J., 2025. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Comprehensive Reviews in Food Science and Food Safety, 242, e70078. https://doi.org/10.1111/1541-4337.70078
Luo, W., Tao, Y., Chen, S., Luo, H., Li, X., i in., 2022. Rosmarinic acid ameliorates pulmonary ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Frontiers in Pharmacology, 13, 860944. https://doi.org/10.3389/fphar.2022.860944
Macedo, P.I.D.S., Pinto, C.A.S.D.O., Hiraishi, C.F., Marques, G.D.A., Escudeiro, C.C., in., 2025. Enhancing Photoprotection and Mitigating Ex Vivo Stratum Corneum Oxidative Stress: A Multifunctional Strategy Combining Rosmarinic Acid with UVB Filters. Antioxidants, 143, 274. https://doi.org/10.3390/antiox14030274
Madureira, A.R., Campos, D.A., Oliveira, A., Sarmento, B., Pintado, M.M., i in., 2016. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces, 139, 277–284. https://doi.org/10.1016/j.colsurfb.2015.11.039
Mahendra, C.K., Tan, L.T.H., Yap, W.H., Chan, C.K., Lingham, P., i in., 2019. Model of experimentation for photoprotective properties of natural products against ultraviolet C UVC damage: A case study on rosmarinic acid. Progress in Drug Discovery and Biomedical Science, 21. https://doi.org/10.36877/pddbs.a0000027
Marchev, A.S., Vasileva, L.V., Amirova, K.M., Savova, M.S., Koycheva, I.K., i in., 2021. Rosmarinic acid – From bench to valuable applications in food industry. Trends in Food Science and Technology, 117, 182–193. https://doi.org/10.1016/j.tifs.2021.03.015
Matkowski, A. 2008. Plant in vitro culture for the production of antioxidants – a review. Biotechnology Advances, 266, 548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001
Melini, F., Melini, V., Luziatelli, F., Abou Jaoudé, R., Ficca, A.G., i in., 2023. Effect of microbial plant biostimulants on fruit and vegetable quality: current research lines and future perspectives. Frontiers in Plant Science, 14, 1251544. https://doi.org/10.3389/fpls.2023.1251544
Moghadam, A., Foroozan, E., Tahmasebi, A., Taghizadeh, M. S., Bolhassani, M., i in., 2023. System network analysis of Rosmarinus officinalis transcriptome and metabolome – Key genes in biosynthesis of secondary metabolites. PLoS One, 183, e0282316. https://doi.org/10.1371/journal.pone.0282316
Moosavi, F., Hosseini, R., Saso, L., Firuzi, O., 2015. Modulation of neurotrophic signaling pathways by polyphenols. Drug design, development and therapy, 23–42. https://doi.org/10.2147/dddt.s96936
Murino Rafacho, B.P., Portugal dos Santos, P., Goncalves, A.D.F., Fernandes, A.A.H., Okoshi, K., i in., A. 2017. Rosemary supplementation Rosmarinus oficinallis L. attenuates cardiac remodeling after myocardial infraction in rats. PLoS One, 125, e0177521. https://doi.org/10.1371/journal.pone.0177521
Murthy, H.N., Joseph, K.S., Paek, K.Y., Park, S.Y., 2024. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Critical Reviews in Biotechnology, 445, 837–859. https://doi.org/10.1080/07388551.2023.2233690
Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., i in., 2019. Therapeutic potential of rosmarinic acid: A comprehensive review. Applied Sciences, 915, 3139. https://doi.org/10.3390/app9153139
Nawaz, M.H., Aizaz, A., Shafique, H., Ropari, A.Q., bin Imran, O., i in., 2024. Rosemary loaded Xanthan coatings on surgical grade stainless steel for potential orthopedic applications. Progress in Organic Coatings, 186, 107987. https://doi.org/10.1016/j.porgcoat.2023.107987
Ngo, Y.L., Lau, C.H., Chua, L.S., 2018. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food and Chemical Toxicology, 121, 687–700. https://doi.org/10.1016/j.fct.2018.09.064
Nisa, R.U., Nisa, A.U., Tantray, A.Y., Shah, A.H., Jan, A.T., i in., 2024. Plant phenolics with promising therapeutic applications against skin disorders: A mechanistic review. Journal of Agriculture and Food Research, 101090. https://doi.org/10.1016/j.jafr.2024.101090
Nordine, A., 2025. Trends in plant tissue culture, production, and secondary metabolites enhancement of medicinal plants: a case study of thyme. Planta, 2614, 84. https://doi.org/10.1007/s00425-025-04655-8
Ordoñez, R., Atarés, L., Chiralt, A., 2022. Biodegradable active materials containing phenolic acids for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 215, 3910–3930. https://doi.org/10.1111/1541-4337.13011
Ortega, L.A.J., Salas, M.A.P., Grijalva, E.P.G., Heredia, J.B., 2023. The role of natural products in the management of skin pigmentary anomalies. w: Natural Products for Skin Diseases: A Treasure Trove for Dermatologic Therapy pp. 111–136. Bentham Science Publishers. https://doi.org/10.2174/9789815179668123010008
Petersen, M. 2013. Rosmarinic acid: new aspects. Phytochemistry Reviews, 12, 207–227. https://doi.org/10.1007/s11101-013-9282-8
Petersen, M., Simmonds, M.S. 2003. Rosmarinic acid. Phytochemistry, 622, 121–125.
Priya, V., Srinivasan, D., Priyadarsini, S., Dabaghzadeh, F., Rana, S.S., i in., 2025. Anxiolytic, antidepressant and healthy sleep-promoting potential of rosmarinic acid: mechanisms and molecular targets. Neuropsychiatric Disease and Treatment, 641–661. https://doi.org/10.2147/ndt.s501597
Przybylska-Balcerek, A., Stuper-Szablewska, K., 2019. Phenolic acids used in the cosmetics industry as natural antioxidants. European Journal of Medical Technologies, 4, 24–32.
Rahbardar, M.G., Hosseinzadeh, H., 2020. Therapeutic effects of rosemary Rosmarinus officinalis L. and its active constituents on nervous system disorders. Iranian Journal of Basic Medical Sciences, 239, 1100.
Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S., i in., 2014. Antioxidant activity of rosemary Rosmarinus officinalis L. essential oil and its hepatoprotective potential. BMC Complementary and Alternative Medicine, 14, 1–9.
Rasool, M., Malik, A., Manan, A., Arooj, M., Husain Qazi, M., i in., 2015. Roles of natural compounds from medicinal plants in cancer treatment: structure and mode of action at molecular level. Medicinal Chemistry, 117, 618–628. https://doi.org/10.2174/1573406411666150430120038
Ritschel, W.A., Starzacher, A., Sabouni, A., Hussain, A.S., Koch, H.P., 1989. Percutaneous absorption of rosmarinic acid in the rat. Methods and Findings in Experimental and Clinical Pharmacology, 115, 345–352.
Runtuwene, J., Cheng, K.C., Asakawa, A., Amitani, H., Amitani, M., i in., 2016. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug design, development and therapy, 2193–2202. https://doi.org/10.2147/dddt.s108539
Sahiner, M., Blake, D.A., Fullerton, M.L., Suner, S.S., Sunol, A.K., i in., 2019. Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles. International Journal of Biological Macromolecules, 137, 836–843. https://doi.org/10.1016/j.ijbiomac.2019.07.032
Sahiner, M., Yilmaz, A.S., Gungor, B., Ayoubi, Y., Sahiner, N., 2022. Therapeutic and nutraceutical effects of polyphenolics from natural sources. Molecules, 2719, 6225. https://doi.org/10.3390/molecules27196225
Salazar, J., Ortega, Á., Pérez, J.L., Garrido, B., Santeliz, R., i in., 2025. Role of polyphenols in dermatological diseases: exploring pharmacotherapeutic mechanisms and clinical implications. Pharmaceuticals, 182, 247. https://doi.org/10.3390/ph18020247
Saucedo-Zuñiga, J.N., Sánchez-Valdes, S., Ramírez-Vargas, E., Guillen, L., Ramos-deValle, L.F., i in., 2021. Controlled release of essential oils using laminar nanoclay and porous halloysite/essential oil composites in a multilayer film reservoir. Microporous and Mesoporous Materials, 316, 110882. https://doi.org/10.1016/j.micromeso.2021.110882
Scarpati, M.L., Oriente, G., 1958. Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off.). Ricerca scientifica, 28, 2329–2333.
Sen, S., Kasikci, M. 2023. Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells. International Ophthalmology, 4310, 3811–3821. https://doi.org/10.1007/s10792-023-02799-8
Sepe, F., Valentino, A., Marcolongo, L., Petillo, O., Calarco, A., i in., 2025. Polysaccharide hydrogels as delivery platforms for natural bioactive molecules: from tissue regeneration to infection control. Gels, 113, 198. https://doi.org/10.3390/gels11030198
Sevgi, K., Tepe, B., Sarikurkcu, C., 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77, 12–21. https://doi.org/10.1016/j.fct.2014.12.006
Sisti, L., Totaro, G., Bozzi Cionci, N., Di Gioia, D., Celli, A., i in., 2019. Olive mill wastewater valorization in multifunctional biopolymer composites for antibacterial packaging application. International Journal of Molecular Sciences, 2010, 2376. https://doi.org/10.3390/ijms20102376
Subongkot, T., Ngawhirunpat, T., Opanasopit, P., 2021. Development of ultradeformable liposomes with fatty acids for enhanced dermal rosmarinic acid delivery. Pharmaceutics, 133, 404. https://doi.org/10.3390/pharmaceutics13030404
Sujitha, S., Murugesan, R., 2025. Rosmarinic acid and dengue virus: computational insights into antiviral potential. LabMed Discovery, 100042. https://doi.org/10.1016/j.lmd.2025.100042
Sutkowska, J., Hupert, N., Gawron, K., Strawa, J. W., Tomczyk, M., i in., 2021. The stimulating effect of rosmarinic acid and extracts from rosemary and lemon balm on collagen type I biosynthesis in osteogenesis imperfecta type I skin fibroblasts. Pharmaceutics, 137, 938. https://doi.org/10.3390/pharmaceutics13070938
Swari, D.A.M.A., Santika, I.W.M., Aman, I.G.M., 2020. Antifungal activities of ethanol extract of. Journal of rosemary leaf, 28–35. https://doi.org/10.24843/jpsa.2020.v02.i01.p05
Sykłowska-Baranek, K., Gaweł, M., Kuźma, Ł., Wileńska, B., Kawka, M., i in., 2023. Rindera graeca A. DC. boiss. & heldr. Boraginaceae in vitro cultures targeting lithospermic acid B and rosmarinic acid production. Molecules, 2812, 4880. https://doi.org/10.3390/molecules28124880
Tada, H., Murakami, Y., Omoto, T., Shimomura, K., Ishimaru, K., 1996. Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry, 422, 431–434. https://doi.org/10.1016/0031-9422(96)00005-2
Taher, M., El-Daly, N.M., El-Khateeb, A.Y., Hassan, S.M., Elsherbiny, E.A., 2021. Chemical composition, antioxidant, antitumor and antifungal activities of methanolic extracts of Coleus blumei, Plectranthus amboinicus and Salvia splendens Lamiaceae. Journal of Agricultural Chemistry and Biotechnology, 1211, 177–187. https://doi.org/10.21608/jacb.2021.209208
Tsai, T.H., Chuang, L.T., Lien, T.J., Liing, Y.R., Chen, i in., 2013. Rosmarinus officinalis extract suppresses Propionibacterium acnes–induced inflammatory responses. Journal of Medicinal Food, 164, 324–333. https://doi.org/10.1089/jmf.2012.2577
Ueda, H., Yamazaki, C., Yamazaki, M., 2002. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biological and Pharmaceutical Bulletin, 259, 1197–1202. https://doi.org/10.1248/bpb.25.1197
Vasileva, L.V., Savova, M.S., Tews, D., Wabitsch, M., Georgiev, M.I., 2021. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food and Chemical Toxicology, 149, 112002. https://doi.org/10.1016/j.fct.2021.112002
Veenstra, J.P., Johnson, J.J., 2021. Rosemary Salvia rosmarinus: Health-promoting benefits and food preservative properties. International Journal of Nutrition, 64, 1. https://doi.org/10.14302/issn.2379-7835.ijn-21-3874
Verma, P., Khan, S.A., Alhandhali, A.J.A., Parasharami, V.A., 2021. Bioreactor upscaling of different tissue of medicinal herbs for extraction of active phytomolecules: A step towards industrialization and enhanced production of phytochemicals. w: Aftab, T., Hakeem K.R. (Red.) Plant growth regulators: Signalling under stress conditions, 455–481. https://doi.org/10.1007/978-3-030-61153-8_21
Wang, G.Y., Chen, S.Y., Chen, Y.Y., Hong, C.J., Hsu, Y.H., i in., 2021. Protective effect of rosmarinic acid-rich trichodesma khasianum clarke leaves against ethanol-induced gastric mucosal injury in vitro and in vivo. Phytomedicine, 80, 153382. https://doi.org/10.1016/j.phymed.2020.153382
Wang, J., Li, G., Rui, T., Kang, A., Li, G., i in., 2017. Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: Absolute bioavailability and dose proportionality. RSC Advances, 715, 9057-9063. https://doi.org/10.1039/c6ra28237g
Wang, L., Wang, H., Chen, J., Qin, Z., Yu, S., i in., 2023. Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli. Metabolic Engineering, 76, 29–38. https://doi.org/10.1016/j.ymben.2023.01.002
Wang, L., Yang, H., Wang, C., Shi, X., Li, K., 2019a. Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomedicine and Pharmacotherapy, 120, 109443. https://doi.org/10.1016/j.biopha.2019.109443
Wang, S.J., Chen, Q., Liu, M.Y., Yu, H.Y., Xu, J.Q., i in., 2019b. Regulation effects of rosemary Rosmarinus officinalis Linn. on hepatic lipid metabolism in OA induced NAFLD rats. Food and Function, 1011, 7356–7365. https://doi.org/10.1039/c9fo01677e
Wang, Y., Liang, Z., Cao, Y., Hung, C.H., Du, R., i in., 2024. Discovery of a novel class of rosmarinic acid derivatives as antibacterial agents: Synthesis, structure-activity relationship and mechanism of action. Bioorganic Chemistry, 146, 107318. https://doi.org/10.1016/j.bioorg.2024.107318
Wawrzyńczak, A., 2023. Cosmetic and pharmaceutic products with selected natural and synthetic substances for melasma treatment and methods of their analysis. Cosmetics, 103, 86. https://doi.org/10.3390/cosmetics10030086
Xiang, Y., Ji, M., Wu, L., Lv, L., Liang, Q., i in., 2022. Rosmarinic acid prevents cisplatin-induced liver and kidney injury by inhibiting inflammatory responses and enhancing total antioxidant capacity, thereby activating the Nrf2 signaling pathway. Molecules, 2722, 7815. https://doi.org/10.3390/molecules27227815
Xiao, Y., Zhang, L., Gao, S., Saechao, S., Di, P., i in., 2011. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One, 612, e29713. https://doi.org/10.1371/journal.pone.0029713
Xu, Y., Han, S., Lei, K., Chang, X., Wang, K., i in., 2016. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. European Journal of Cancer Prevention, 256, 481–489. https://doi.org/10.1097/cej.0000000000000205
Xu, Y., Xu, G., Liu, L., Xu, D., Liu, J., 2010. Anti‐invasion effect of rosmarinic acid via the extracellular signal‐regulated kinase and oxidation–reduction pathway in Ls174‐T cells. Journal of Cellular Biochemistry, 1112, 370–379. https://doi.org/10.1002/jcb.22708
Yang, J., Goksen, G., Zhang, W., 2023. Rosemary essential oil: Chemical and biological properties, with emphasis on its delivery systems for food preservation. Food Control, 154, 110003. https://doi.org/10.1016/j.foodcont.2023.110003
Yeddes, W., Bettaieb Rebey, I., Manai-Djebali, H., Rguez, S., Hammami, M., i in., 2025. Assessing the efficacy of rosemary extract as a natural preservative for enhancing oxidative stability and preventing rancidity in linseed oil. Journal of Food Measurement and Characterization, 1–12. https://doi.org/10.1007/s11694-025-03107-x
Yeddes, W., Chalghoum, A., Aidi-Wannes, W., Ksouri, R., Saidani Tounsi, M., 2019. Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary Rosmarinus officinalis L. leaves. Journal of Essential Oil Research, 315, 432–443. https://doi.org/10.1080/10412905.2019.1577305
Yi, D., Wang, M., Liu, X., Qin, L., Liu, Y., i in., 2024. Rosmarinic acid attenuates Salmonella enteritidis-induced inflammation via regulating TLR9/NF-κB signaling pathway and intestinal microbiota. Antioxidants, 1310, 1265. https://doi.org/10.3390/antiox13101265
Youn, J., Lee, K.H., Won, J., Huh, S.J., Yun, H.S., i in., 2003. Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. The Journal of Rheumatology, 306, 1203–1207.
Yücel, Ç., Şeker Karatoprak, G., Değim, İ.T., 2019. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. Journal of Microencapsulation, 362, 180–191. https://doi.org/10.1080/02652048.2019.1617363
Zeid, A., Karabagias, I. K., Nassif, M., and Kontominas, M. G., 2019. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. Journal of Food Processing and Preservation, 4310, e14102. https://doi.org/10.1111/jfpp.14102
Zeng, Y., Guo, L. P., Chen, B. D., Hao, Z. P., Wang, J. Y., i in., 2013. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza, 23, 253–265. https://doi.org/10.1007/s00572-013-0484-0
Zenk, M. H., El-Shagi, H., and Ulbrich, B., 1977. Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften, 64, 585–586.
Zhou, P., Yue, C., Zhang, Y., Li, Y., Da, X., i in., 2022. Alleviation of the byproducts formation enables highly efficient biosynthesis of rosmarinic acid in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 7016, 5077–5087. https://doi.org/10.1021/acs.jafc.2c01179
Zhou, Z., Tan, H., Li, Q., Chen, J., Gao, S., i in., 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry, 148, 63–70. https://doi.org/10.1016/j.phytochem.2018.01.015
Zhuang, Y., Jiang, J., Bi, H., Yin, H., Liu, S., i in., 2016. Synthesis of rosmarinic acid analogues in Escherichia coli. Biotechnology Letters, 38, 619–627. https://doi.org/10.1007/s10529-015-2011-1
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2026 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 7
Liczba cytowań: 0