Kultury roślinne in vitro – od produkcji leków do ochrony bioróżnorodności
DOI:
https://doi.org/10.12775/KOSMOS.2025.016Słowa kluczowe
bioróżnorodność, kalus, kultury in vitro, mikrorozmnażanie, rośliny, zarodki somatyczneAbstrakt
Roślinne kultury in vitro stają się coraz ważniejszym narzędziem w ochronie bioróżnorodności i w zrównoważonym rozwoju. Umożliwiają one nie tylko pozyskiwanie cennych substancji bez niszczenia roślin w ich środowisku naturalnym i niezależnie od warunków klimatycznych, ale także rozmnażanie zagrożonych gatunków i ich reintrodukcję. W artykule przedstawiono przegląd zastosowań różnych typów kultur in vitro w medycynie (produkcja leków, białek terapeutycznych), rolnictwie (biostymulanty, mikrorozmnażanie), przemyśle spożywczym (barwniki, enzymy) i technologii (nanomateriały). Szczególną uwagę poświęcono wykorzystaniu kultur in vitro w ochronie gatunków zagrożonych, dzikich i uprawnych. Autorzy podkreślają znaczenie zintegrowanego podejścia łączącego wiedzę z zakresu biotechnologii, chemii i ochrony środowiska. Mimo trudności w otrzymywaniu wydajnych i długożyjących kultur, zwłaszcza roślin jednoliściennych, technologie in vitro stanowią dziś nie tylko wsparcie dla przemysłu, ale też realną szansę na zachowanie zasobów przyrody dla przyszłych pokoleń.
Bibliografia
Agrawal, A., Gowthami, R., Chander, S., Srivastava, V., 2022. Sustainability of in vitro genebanks and cryogenebanks, 180–184. https://doi.org/10.5958/0976-1926.2022.00065.1
Ahmad, Z., Shareen Ganie, I.B., Firdaus, F., Ramakrishnan, M., Shahzad, A. i in., 2024. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. Plants, 13(15), 2171. https://doi.org/10.3390/plants 13152171
Alanagh, E.N., Garoosi, G.A., Haddad, R., Maleki, S., Landín, M., i in., 2014. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell, Tissue and Organ Culture (PCTOC), 117(3), 349–359. https://doi.org/10.1007/s11240-014-0444-1
Babich, O., Sukhikh, S., Pungin, A., Ivanova, S., Asyakina, L. i in., 2020. Modern trends in the in vitro production and use of callus, suspension cells and root cultures of medicinal plants. Molecules, 25(24), 5805. https://doi.org/10.3390/molecules25245805
Bairu, M.W., Kane, M.E., 2011. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regulators, 63, 101–103. https://doi.org/10. 1007/s10725-011-9565-2
Behera, P.P., Sivasankarreddy, K., Prasanna, V.S.S.V., 2022. Somatic embryogenesis and plant regeneration in horticultural crops. W: Commercial scale tissue culture for horticulture and plantation crops, pp. 197–217. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0055-6_9
Bennur, P. L., O’Brien, M., Fernando, S. C., Doblin, M. S., 2025. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. Journal of Experimental Botany, 76(1), 52–75. https://doi.org/10.1093/jxb/erae189
Bernaś, E., Słupski, J., Gębczyński, P., Ražná, K., Žiarovská, J., 2023. Chemical Composition and genome Pattern as a Means of Identifying the Origin of Preserved Wild Garlic (Allium ursinum L.) in Poland. Agriculture, 14(1), 20. https://doi.org/10.3390/agriculture14010020
Betekhtin, A., Hus, K., Rojek-Jelonek, M., Kurczynska, E., Nibau, C., Doonan, J. H., i Hasterok, R. (2020). In vitro tissue culture in Brachypodium: applications and challenges. International Journal of Molecular Sciences, 21(3), 1037. https://doi.org/10.3390/ijms21031037
Bettoni, J.C., Wang, M.R., Wang, Q.C., 2024. In vitro regeneration, micropropagation and germplasm conservation of horticultural plants. Horticulturae, 10(1), 45. https://doi.org/10.3390/horticulturae10010045
Bhattacharyya, P., Kumaria, S., Tandon, P., 2016. High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. South African Journal of Botany, 104, 232–243. https://doi.org/10.1016/j.sajb.2015.11.013
Bonga, M., J., Klimaszewska, K., K., Aderkas, V., 2010. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue and Organ Culture (PCTOC), 100, 241–254. https://doi.org/10.1007/s11240-009-9647-2
Brudzyńska, P., Sionkowska, A., Grisel, 2021. Plant-derived colorants for food, cosmetic and textile industries: A review. Materials, 14(13), 3484. https://doi.org/10.3390/ma14133484
Chandana, B.C., Kumari Nagaveni, H.C., Lakshmana, D., Shashikala, S.K., Heena, M.S., 2018. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. Journal of Pharmacognosy and Phytochemistry, 3, 246–251.
Chen, J.Y., Yue, R.Q., Xu, H.X., Chen, X.J., 2006. Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agricultural Sciences in China, 5(8), 572–578. https://doi.org/10.1016/s1671-2927(06)60094-1
Chokheli, V.A., Dmitriev, P.A., Rajput, V.D., Bakulin, S.D., Azarov, A.S., 2020. Recent development in micropropagation techniques for rare plant species. Plants, 9(12), 1733. https://doi.org/10.3390/plants9121733
Coelho, N., Gonçalves, S., Romano, A., 2020. Endemic plant species conservation: Biotechnological Approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345
Corlett, T.R., 2016. Plant diversity in a changing world: status, trends, and conservation needs. Plant Diversity, 38(1), 10–16. https://doi.org/10.1016/j.pld.2016.01.001
Corlett, T.R., 2024. The ecology of plant extinctions. Trends in Ecology i Evolution, 40(3), 286–295. https://doi.org/10.1016/j. tree.2024.11.007
Cranenbrouck, S., Voets, L., Bivort, C., Renard, L., Strullu, DG., Declerck, S., 2005. Methodologies for in Vitro Cultivation of Arbuscular Mycorrhizal Fungi with Root Organs. W: Declerck, S., Fortin, J.A., Strullu, DG. (red.) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_18
Custódio, L., Charles, G., Magné, C., Barba--Espín, G., Piqueras, A., i in., 2022. Application of in vitro plant tissue culture techniques to halophyte species: A review. Plants, 12(1), 126. https://doi.org/10.3390/plants12010126
Custódio, L., Cziáky, Z., Castañeda-Loaiza, V., Rodrigues, M.J., 2024. Establishment and elicitation of liquid adventitious root cultures of Inula crithmoides L. for increased caffeoylquinic acids production and hepatoprotective properties. Plant Cell, Tissue and Organ Culture (PCTOC), 156(2), 59. https://doi.org/10.1007/s11240-024-02690-z
Dziurka, M., Kubica, P., Kwiecień, I., Biesaga--Kościelniak, J., Ekiert, H. i in., 2021. In vitro cultures of some medicinal plant species (Cistus× incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants – Evaluation by CUPRAC and QUENCHER--CUPRAC assays. Plants, 10(3), 454. https://doi.org/10.3390/plants1003045
Ebert, W.A., Engels, M.J., 2020. Plant biodiversity and genetic resources matter!. Plants, 9(12), 1706. https://doi.org/10.3390/plants9121706
Efferth, T., 2019. Biotechnology applications of plant callus cultures. Engineering, 5(1), 50–59. https://doi.org/10.1016/j.eng. 2018.11.006
Escobedo-GraciaMedrano, R.M., Enríquez-Valencia, A.J., Youssef, M., López-Gómez, P., Cruz-Cárdenas, C.I. i in., 2016. Somatic Embryogenesis in Banana, Musa ssp. W: Somatic embryogenesis: fundamental aspects and applications, 381–400. https://doi.org/10.1007/978-3-319-33705-0_21
Espinosa-Leal, A.C., Puente-Garza, A.C., García-Lara, 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta, 248, 1–18. https://doi.org/10.1007/s00425-018-2910-1
Garrocho-Villegas, V., Jesús-Olivera, T.M., Quintanar, E.S., 2012. Maize somatic embryogenesis: recent features to improve plant regeneration. Plant Cell Culture Protocols, 173–182. https://doi.org/10.1007/978-1-61779-818-4_14
Gautheret, J.R., 1983. Plant tissue culture: A history. The Botanical Magazine= Shokubutsu-gaku-zasshi, 96, 393–410. Gogoi, M.B., Chetia, I., Sarmah, B.K., Nath, T., Bhowal, S. i in., 2020. Study of androgenesis in (Musa balbisiana) cv. Bhimkol banana and in vitro regeneration of haploids using isolated microspore culture. International Journal of Current Microbiology and Applied Sciences, 9, 2555–2565. https://doi.org/10.20546/ijcmas.2020.909.320
Gupta, N., Bhattacharya, S., Dutta, A., Cusimamani, E.F., Milella, L., 2024. In vitro synthetic polyploidization in medicinal and aromatic plants for enhanced phytochemical efficacy – a mini-review. Agronomy, 14(8), 1830. https://doi.org/10.3390/agronomy14081830
Hano, C., Abbasi, H.B., 2021. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31. https://doi.org/10.3390/biom12010031
Hasnain, A., Naqvi, S.A.H., Ayesha, S.I., Khalid, F., Ellahi, M. i in., 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395
Ikeuchi, M., Sugimoto, K., Iwase, 2013. Plant callus: mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Kaushal, N., Srivastava, V., Singh, S., Gangwar, R., Singh, P. i in., 2023. A comprehensive review on role of plant tissue culture in ornamental crops: cultivation factors, applications and future aspects. International Journal of Environment and Climate Change, 13(11), 1802–1815. https://doi.org/10.9734/ijecc/2023/v13i113337
Kaviani, B., Kulus, D., 2022. Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biology, 11(6), 847. https://doi.org/10.3390/biology11060847
Kougioumoutzis, K., Tsakiri, M., Kokkoris, I.P., Trigas, P., Iatrou, G. i in., 2024. Assessing the vulnerability of medicinal and aromatic plants to climate and land-use changes in a Mediterranean biodiversity hotspot. Land, 13(2), 133. https://doi.org/10.3390/land13020133
Krasteva, G., Georgiev, V., Pavlov, A., 2020. Recent applications of plant cell culture technology in cosmetics and food industries. Engineering in Life Sciences, 20(12), 531–540. https://doi.org/10.1002/elsc.202000078
Kulus, D., Tymoszuk, A., 2024. Advancements in In Vitro Technology: A Comprehensive Exploration of Micropropagated Plants. Horticulturae, 10(1), 88. https://doi.org/10.3390/horticulturae10010088
Loyola-Vargas, M.V., Ochoa-Alejo, N., 2018. An introduction to plant tissue culture: advances and perspectives. Plant Cell Culture Protocols, 3–13. https://doi.org/10.1007/978-14939-8594-4_ 1
Loyola-Vargas, M.V., Ochoa-Alejo, N., 2024. An Introduction to Plant Cell, Tissue, and Organ Culture: Current Status and Perspectives. Plant Cell Culture Protocols, 1–13. https://doi.org/10.1007/978-1-0716-3954-2_1
Mansinhos, I., Gonçalves, S., Romano, A., 2024. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. Frontiers in Plant Science, 15, 1370810. https://doi.org/10.3389/fpls.2024.1370810
McFarland, L.F., Kaeppler, F.H., 2025. History and current status of embryogenic culture‐based tissue culture, transformation and gene editing of maize (Zea mays L.). Plant Genome, 18(1), e20451. https://doi.org/10.1002/tpg2.20451
Mikuła, A., Chmielarz, P., Hazubska-Przybył, T., Kulus, D., Maślanka, M. i in., 2022. Cryopreservation of Plant Tissues in Poland: Research Contributions, Current Status, and Applications. Acta Societatis Botanicorum Poloniae, 91. https://doi.org/10.5586/asbp.9132
Miroshnichenko, D., Chaban, I., Chernobrovkina, M., Dolgov, S., 2017. Protocol for efficient regulation of in vitro morphogenesis in einkorn (Triticum monococcum L.), a recalcitrant diploid wheat species. PLoS One, 12(3), e0173533. https://doi.org/10.1371/journal.pone.0173533
Miroshnichenko, T.M., Ivchenko, T.V., Bashtan, N.O., Mozgovska, H.V., 2023. Medium Composition For In Vitro Mid-Term Storage Of Solanum Habrochaites Test-Tube Plants. Vegetable and Melon Growing, (74), 6–18. https://doi.org/10.32717/0131-0062-2023-74-6-18
Monder, J.M., Pacholczak, A., Zajączkowska, M., 2024. Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture, 14(12), 2328. https://doi.org/10.3390/agriculture14122328
Moraes, M.R., Cerdeira, L.A., Lourenço, M.V., 2021. Using micropropagation to develop medicinal plants into crops. Molecules, 26(6), 1752. https://doi.org/10.3390/molecules26061752
Oluwaseun Adetunji, C., Mathew, J.T., Inobeme, A., Olaniyan, O.T., RB Singh, K. i in., 2022. Microbial and plant cell biosensors for environmental monitoring. W: Nanobiosensors for Environmental Monitoring, Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (red.), pp. 175–190. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-16106-3_9
Patiño, D., Figueroa, L.T., 2025. Micropropagation of banana cv. Williams through temporary immersion system: Response to explant density and plant growth regulators. Agroindustrial Science, 15(1), 49–54. https://doi.org/10.17268/agroind.sci.2025.01.05
Perzanowska, J., Korzeniak, J., 2020. Red list of Natura 2000 habitat types of Poland. Journal for Nature Conservation, 56, 125834. https://doi.org/10.1016/j.jnc.2020.125834
Petrova, M., Zayova, E., Geneva, M., Dimitrova, L., Vitkova, A. i in., 2021. Multiplication and conservation of threatened medicinal plant Arnica montana L. by in vitro techniques. Agriculturae Conspectus Scientificus, 86(1), 57–65.
Peyret, H., Steele, J.F., Jung, J.W., Thuenemann, E.C., Meshcheriakova, Y. i in., 2021. Producing vaccines against enveloped viruses in plants: Making the impossible, difficult. Vaccines, 9(7), 780. https://doi.org/10.3390/vaccines9070780
Podwyszyńska, M., Orlikowska, T., Trojak-Goluch, A., Wojtania, A., 2022. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Societatis Botanicorum Poloniae, 91(1), 914. https://doi.org/10.5586/asbp.914
Posmyk, M.M., Szafrańska, K., 2016. Biostimulators: a new trend towards solving an old problem. Frontiers in Plant Science 7, 748. https://doi.org/10.3389/fpls.2016.00748
Priyanka, V., Kumar, R., Dhaliwal, I., Kaushik, P., 2021. Germplasm conservation: instrumental in agricultural biodiversity–a review. Sustainability, 13(12), 6743. https://doi.org/10.3390/su13126743
Radomir, A.M., Stan, R., Florea, A., Ciobotea, C.M., Bănuță, F.M. i in., 2023. Overview of the success of in vitro culture for ex situ conservation and sustainable utilization of endemic and subendemic native plants of Romania. Sustainability, 15(3), 2581. https://doi.org/10.3390/su15032581
Rajan, R.P., Singh, G.U.R.P.R.E.E.T., 2021. A review on application of somaclonal variation in important horticulture crops. Plant Cell Biotechnology and Molecular Biology, 22, 161–175. https://doi.org/10.51470/plantarchives.2021.v21.s1.103
Ramachandra Rao, S., Ravishankar, G.A., 2002. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. https://doi.org/10.1016/s0734-9750(02)00007-1
Ruta, C., Lambardi, M., Ozudogru, E.A., 2020. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodiversity and Conservation, 29, 3495–3532. https://doi.org/10.1007/s10531-020-02051-0
Saha, S., Chowdhury, T., Ghosh, P., 2022. Micropropagation for Stress Tolerance in Crop Plants: An Overview. W: Response of Field Crops to Abiotic Stress, 241249, CRC Press. https://doi.org/10.1201/9781003258063-20
Sarmah, D., Kolukunde, S., Sutradhar, M., Singh, B. K., Mandal, T. i in., 2017. A review on: in vitro cloning of orchids. International Journal of Current Microbiology and Applied Sciences, 6(9), 1909–27. https://doi.org/10.20546/ijcmas.2017.609.235
Schenk, R.U., Hildebrandt, A.C., 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199–204. Singh, D., Srivastava, S., Verma, S.K., Singh, V., 2025. Advances in Medicinal Plant Biotechnology and Future Directions. W: Biotechnology, Multiple Omics, and Precision Breeding in Medicinal Plants, pp. 258–269, CRC Press. https://doi.org/10.1201/9781003475491-19
Singh, R.K., Chokheli, V.A., 2025. Plant Biotechnology: Applications in In Vitro Plant Conservation and Micropropagation. Horticulturae, 11(4), 358. https://doi.org/10.3390/horticulturae11040358
Sharma, P., i Jain, S.M., 2024. Micropropagation Applications in Conservation of Horticultural Crops. Sustainable Utilization and Conservation of Plant Genetic Diversity (pp. 683–710). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99- 5245-8_20
Sochacki, D., Marciniak, P., Zajączkowska, M., Treder, J., Kowalicka, P., 2024. In situ and ex situ conservation of Ornamental Geophytes in Poland. Sustainability, 16(13), 5375. https://doi.org/10.3390/su16135375
Solís-Ramos, L.Y., Andrade-Torres, A., Carbonell, L.A.S., Salín, C.M.O., de la Serna, E.C., 2012. Somatic embryogenesis in recalcitrant plants. W: Embryogenesis. IntechOpen. https://doi.org/10.5772/35967
Solórzano-Acosta, R., Guerrero-Padilla, M., 2020. Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red. American Journal of Plant Sciences, 11(9), 1429–1442. https://doi.org/10.4236/ajps.2020.119103
Teixeira da Silva, J.A., Gulyás, A., Magyar-Tábori, K., Wang, M.R., Wang, Q.C., i in., 2019. In vitro tissue culture of apple and other Malus species: recent advances and applications. Planta, 249(4), 975–1006. https://doi.org/10.1007/s00425-019-03100-x
Thorpe, A.T., 2000. History of plant cell culture. W: Loyola-Vargas, V.M., Vázquez-Flota, F. (red.), Plant Cell Tissue Culture. Techniques and Experiments, 1–32, Humana Press. https://doi.org/10.1385/1-59259-959-1:009
Tienaho, J., Reshamwala, D., Karonen, M., Silvan, N., Korpela, L. i in., 2021. Field-grown and in vitro propagated round-leaved sundew (Drosera rotundifolia L.) show differences in metabolic profiles and biological activities. Molecules, 26(12), 3581. https://doi.org/10.3390/molecules26123581
Tiwari, P., Sharma, A., Bose, S.K., Park, K. I., 2024. Advances in orchid biology: biotechnological achievements, translational success, and commercial outcomes. Horticulturae, 10(2), 152. https://doi.org/10.3390/horticulturae10020152
Tripathi, M.K., Tiwari, S., Tripathi, N., Tiwari, G., Bhatt, D. i in., 2021. Plant tissue culture techniques for conservation of biodiversity of some plants appropriate propagation in degraded and temperate areas. Current Topics in Agricultural Sciences; BP International Publisher: Bhanjipur, India, 4, 30–60. https://doi.org/10.9734/bpi/ctas/v4/2119c
Venkataraman, S., Khan, I., Habibi, P., Le, M., Lippert, R. i in., 2023. Recent advances in expression and purification strategies for plant made vaccines. Frontiers in Plant Science, 14, 1273958. https://doi.org/10.3389/fpls.2023.1273958
Walters, C., Pence, V.C., 2021. The unique role of seed banking and cryobiotechnologies in plant conservation. Plants, People, Planet, 3(1), 83–91. https://doi.org/10.1002/ppp3.10121
Wang, M.R., Bettoni, J.C., Zhang, A.L., Lu, X., Zhang, D. i in., 2022. In vitro micrografting of horticultural plants: Method development and the use for micropropagation. Horticulturae, 8(7), 576. https://doi.org/10.3390/horticulturae8070576
Wang, Z., Xing, Y., Zhao, C., Ren, S., Wu, J. i in., 2023. The RUBY reporter enables efficient haploid identification in maize and tomato. Plant Biotechnology Journal, 21(3), 654656. https://doi.org/10.1111/pbi.14071
Wawrosch, C., Zotchev, S.B., 2021. Production of bioactive plant secondary metabolites through in vitro technologies–status and outlook. Applied Microbiology and Biotechnology, 105(18), 6649–6668. https://doi.org/10.1007/s00253-021-11539-w
Yusibov, V., Kushnir, N., Streatfield, S.J., 2016. Antibody production in plants and green algae. Annual Review of Plant Biology, 67(1), 669–701. https://doi.org/10.1146/annurev--arplant-043015-11181 2
Zhang, H., Li, Y., Zhu, J.K., 2018. Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 4(12), 989–996. https://doi.org/10.1038/s41477018-0309-4
Zhu, L., Zhou, L., Li, J., Chen, Z., Wang, M. i in., 2024. Regeneration of ornamental plants: current status and prospects. Ornamental Plant Research, 4: e022. https://doi.org/10.48130/opr-0024-0022
Zimnoch-Guzowska, E., Chmielarz, P., Wawrzyniak, M.K., Plitta-Michalak, B.P., Michalak, M. i in., 2022. Polish cryobanks: Research and conservation of plant genetic resources. Acta Societatis Botanicorum Poloniae, 91, 9121. https://doi.org/10.5586/asbp.9121
Żabicka, J., Żabicki, P., Słomka, A., Jędrzejczyk--Korycińska, M., Nowak, T. i in., 2021. Genotype-dependent mass somatic embryogenesis: a chance to recover extinct populations of Pulsatilla vulgaris Mill. Plant Cell, Tissue and Organ Culture (PCTOC), 146, 345–355. https://doi.org/10.1007/s11240-021-02074-7
Żabicki, P., Sliwinska, E., Mitka, J., Sutkowska, A., Tuleja, M. i in., 2019. Does somaclonal variation play advantageous role in conservation practice of endangered species?: comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina Kit. (Violaceae). Plant Cell, Tissue and Organ Culture (PCTOC), 136, 339–352. https://doi.org/10.1007/s11240-018-1519-1
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2026 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 21
Liczba cytowań: 0