Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

KOSMOS

Nanoceluloza roślinna – ekologiczny polimer przyszłości?
  • Strona domowa
  • /
  • Nanoceluloza roślinna – ekologiczny polimer przyszłości?
  1. Strona domowa /
  2. Archiwum /
  3. Tom 74 Nr 3 (347) (2025): Rośliny i ludzie – wspólna historia, wspólna przyszłość. Nowe spojrzenie /
  4. Artykuły

Nanoceluloza roślinna – ekologiczny polimer przyszłości?

Autor

  • Danuta Solecka Zakład Ekofizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej i Biotechnologii Roślin, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, https://orcid.org/0000-0002-0969-7209

DOI:

https://doi.org/10.12775/KOSMOS.2025.023%20

Słowa kluczowe

biopolimery, inżynieria środowiska, magazynowanie energii, nanoceluloza roślinna, nanotechnologia, zastosowania medyczne

Abstrakt

Artykuł poświęcony jest nanocelulozie roślinnej jako perspektywicznemu, ekologicznemu materiałowi przyszłości. Przedstawia właściwości, metody pozyskiwania oraz zastosowania różnych typów nanocelulozy, podkreślając ich odnawialność, biodegradowalność i niski wpływ na środowisko. W artykule omówiono źródła surowców, techniki ekstrakcji oraz potencjał modyfikacji chemicznej, która umożliwia dostosowanie nanocelulozy do potrzeb medycyny, inżynierii materiałowej, energetyki, przemysłu spożywczego czy remediacji środowiskowej. Szczególną uwagę poświęcono zastosowaniom w medycynie (opatrunki, rusztowania tkankowe) i technologii magazynowania energii (superkondensatory, materiały PCM). Artykuł analizuje także aspekty związane z regulacjami prawnymi oraz wyzwania technologiczne i ekonomiczne związane z wdrażaniem nanocelulozy na skalę przemysłową, wskazując na jej strategiczne znaczenie dla gospodarki o obiegu zamkniętym i zrównoważonego rozwoju.

Bibliografia

Ahmed, M.K., Khalifa, A.J.N., 2024. Improving the Thermal Properties of Phase Change Materials Using Different Types of Additives: A Review. Library Progress International, 44(2s), 1475–1499. ISSN 0970 1052.

Ahmed, S., Islam, M.S., Antu, U.B., Islam, M.M., Rajput, V.D., i in., 2024. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. International Journal of Biological Macromolecules, 137979. https://doi.org/10.1016/j.ijbiomac.2024.137979

Akhter, F., Pinjaro, M.A., Ahmed, J., Ahmed, M., Arain, H. J., i in., 2025. Recent advances and synthesis approaches for enhanced heavy metal adsorption from wastewater by silica-based and nanocellulose-based 3D structured aerogels: a state of the art review with adsorption mechanisms and prospects. Biomass Conversion and Biorefinery, 15(5), 6585–6614. https://doi.org/10.1007/s13399-024-05469-6

Alić, J., Schlegel, M.C., Emmerling, F., Stolar, T., 2024. Meeting the UN sustainable development goals with mechanochemistry. Angewandte Chemie International Edition, 63(50), e202414745. https://doi.org/10.1002/anie.202414745

Al‐Zu'bi, M., Fan, M., 2025. Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals ‐ A Review Journal of Biomedical Materials Research Part B: Applied Biomaterials, 113(5), e35585. https://doi.org/10.1002/jbm.b.35585

Babaei-Ghazvini, A., Patel, R., Vafakish, B., Yazdi, A.F.A., Acharya, B., 2024. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. International Journal of Biological Macromolecules, 135200. https://doi.org/10.1016/j.ijbiomac.2024.135200

Bai, L., Huan, S., Zhu, Y., Chu, G., McClements, D.J., Rojas, O.J., 2021. Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 12, 383–406. https://doi.org/10.1146/annurev-food-061920-123242

Chin, K.M., Sung Ting, S., Ong, H.L., Omar, M., 2018. Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review. Journal of Applied Polymer Science, 135(13), 46065. https://doi.org/10.1002/app.46065

Čolić, M., Tomić, S., Bekić, M., 2020. Immunological aspects of nanocellulose. Immunology Letters, 222, 80–89. https://doi.org/10.1016/j.imlet.2020.04.004

da Silva, R.N.A., de Macedo Neto, J.C., Kimura, S.P.R., 2022. Natural fiber for reinforcement in matrix polymeric. Independent Journal of Management Production, 13(1), 154–167. https://doi.org/10.14807/ijmp.v13i1.1475

Das, R., Lindström, T., Khan, M., Rezaei, M., Hsiao, B.S., 2023. Nanocellulose preparation from diverse plant feedstocks, processes, and chemical treatments: A review emphasizing non-woods. BioResources, 19(1). https://doi.org/10.15376/biores.19.1.das

de Amorim, J.D.P., de Souza, K.C., Duarte, C.R., da Silva Duarte, I., de Assis Sales Ribeiro, i in., 2020. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environmental Chemistry Letters, 18, 851–869. https://doi.org/10.1007/s10311-020-00989-9

Ferreira, F.V., Pinheiro, I.F., de Souza, S.F., Mei, L.H., Lona, L.M., 2019. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. Journal of Composites Science, 3(2), 51. https://doi.org/10.3390/jcs3020051

Frank, B.P., Smith, C., Caudill, E.R., Lankone, R.S., Carlin, K., i in., 2021. Biodegradation of functionalized nanocellulose. Environmental Science Technology, 55(15), 10744–10757. https://doi.org/10.1021/acs.est.0c07253

Gan, P.G., Sam, S.T., Abdullah, M.F.B., Omar, M.F., 2019. Thermal properties of nanocellulose‐reinforced composites: A review. Journal of Applied Polymer Science, 137(11), 48544. https://doi.org/10.1002/app.48544

Gao, W., Tu, Q., Wang, P., Zeng, J., Li, J., i in., 2024. Conductive polymer/nanocellulose composites as a functional platform for electronic devices: A mini-review. Polymer Reviews, 64(1), 162–191. https://doi.org/10.1080/15583724.2023.2220018

Goncalves, J., El-Bakkari, M., Boluk, Y., Bindiganavile, V., 2019. Cellulose nanofibres (CNF) for sulphate resistance in cement based systems. Cement and Concrete Composites, 99, 100–111. https://doi.org/10.1016/j.cemconcomp.2019.03.005

Gopinath, K.P., Rajagopal, M., Krishnan, A., Sreerama, S.K., 2021. A review on recent trends in nanomaterials and nanocomposites for environmental applications. Curr Anal Chem, 17(2), 202–243. https://doi.org/10.2174/1573411016666200102112728

Han, S., Li, J., Zang, J., Ding, Q., Yu, Z., Lu, Y., 2025. Effects of cellulose nanofibrils on the mechanical and thermal properties of phase change foams based on polyethylene glycol/cellulose nanofibrils/waterborne polyurethane. International Journal of Biological Macromolecules, 287, 138655. https://doi.org/10.1016/j.ijbiomac.2024.138655

He, R., Xie, C., Chen, Y., Guo, Z. X., Guo, B., Tuo, X., 2022. Robust and highly resilient waterborne polyurethane-based composite aerogels prepared by blending with aramid nanofibers. Current Analytical Chemistry, 228, 109622, https://doi.org/ 10.1016/j.compscitech.2022.109622. https://doi.org/10.1016/j.compscitech.2022.109622

Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., Salgado Delgado, A.M., 2023. Rice husk Var.‘Morelos A-2010’as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571–7586. https://doi.org/10.1080/03067319.2021.1972991

Hutten, I.M., 2016. Standards for Nonwoven Filter Media. Handbook of Nonwoven Filter Media, 563–588. https://doi.org/10.1016/b978-0-08-098301-1.00011-3

Islam, M.T., Alam, M.M., Patrucco, A., Montarsolo, A., Zoccola, M., 2014. Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23. https://doi.org/10.14504/ajr.1.5.3

James, A., Rahman, M.R., Mohamad Said, K.A., Kanakaraju, D., Sueraya, A.Z., i in., 2024. A review of nanocellulose modification and compatibility barrier for various applications. Journal of Thermoplastic Composite Materials, 37(6), 2149–2199. https://doi.org/10.1177/08927057231205451

Kim, H., Dutta, S.D., Randhawa, A., Patil, T.V., Ganguly, K., i in., 2024. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. International Journal of Biological Macromolecules, 130732. https://doi.org/10.1016/j.ijbiomac.2024.130732

Kumar, S., Ngasainao, M.R., Sharma, D., Sengar, M., Gahlot, A.P.S., i in., 2022. Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers, 298, 120052. https://doi.org/10.1016/j.carbpol.2022.120052

Kupnik, K., Primožič, M., Kokol, V., Leitgeb, M., 2020. Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel), 12(12), 2825. https://doi.org/10.3390/polym12122825

Li, J., Wu, R., Wang, W.J., Lim, K.H., Yang, X., 2025a. Papers with high filler contents enabled by nanocelluloses as retention and strengthening agents. Carbohydrate Polymers, 358, 123506. https://doi.org/10.1016/j.carbpol.2025.123506

Li, L., Su, Y., Klein, F., Garemark, J., Li, Z., i in., 2025b. Synchronized ultrasonography and electromyography signals detection enabled by nanocellulose based ultrasound transparent electrodes. Carbohydrate Polymers, 347, 122641. https://doi.org/10.1016/j.carbpol.2024.122641

Li, L., Zhong, D., Wang, S., Zhou, M., 2025c. Plant-derived materials for biomedical applications. Nanoscale, 17(2), 722–739. https://doi.org/10.1039/d4nr03057e

Liu, C., Wang, H., Lei, T., He, Y., Zhu, F., i in., 2025. Design of boron nitride/nanocellulose aerogel-stabilized phase change materials for efficient thermal energy capture and storage. International Journal of Biological Macromolecules, 295, 139572. https://doi.org/10.1016/j.ijbiomac.2025.139572

Liu, H., Du, H., Zheng, T., Liu, K., Ji, X., i in., 2021. Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 426, 130817. https://doi.org/10.1016/j.cej.2021.130817

Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., i in., 2022. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 32(26), 2113082. https://doi.org/10.1002/adfm.202113082

Liu, L., Zheng, K., Yan, Y., Cai, Z., Lin, S., i in., 2018. Graphene Aerogels Enhanced Phase Change Materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Solar Energy Materials and Solar Cells, 185, 487–493. https://doi.org/10.1016/j.solmat.2018.06.005

Lv, Q., Ma, X., Zhang, C., Han, J., He, S., i in., 2024a. Nanocellulose-based nanogenerators for sensor applications: A review. International Journal of Biological Macromolecules, 259, 129268. https://doi.org/10.1016/j.ijbiomac.2024.129268

Lv, X., Huang, Y., Hu, M., Wang, Y., Dai, D., i in., 2024b. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. International Journal of Biological Macromolecules, 134015. https://doi.org/10.1016/j.ijbiomac.2024.134015

Maitra, M., Adari, R., Radha, P., 2025. Sustainable packaging films: polylactic acid-surface-modified nanocellulose-pectin biocomposite to extend shelf life of strawberry fruit. Journal of Food Science and Technology, 1–15. https://doi.org/10.1007/s13197-024-06195-7

Mishra, P.K., Pavelek, O., Rasticova, M., Mishra, H., Ekielski, A., 2022. Nanocellulose-based biomedical scaffolds in future bioeconomy: a techno-legal assessment of the state-of-the-art. Frontiers in Bioengineering and Biotechnology, 9, 789603. https://doi.org/10.3389/fbioe.2021.789603

Nishiguchi, A., Taguchi, T., 2019. Osteoclast-responsive, injectable bone of bisphosphonated-nanocellulose that regulates osteoclast/osteoblast activity for bone regeneration. Biomacromolecules, 20(3), 1385–1393. https://doi.org/10.1021/acs.biomac.8b01767

Nishiguchi, A., Taguchi, T., 2020. Designing an anti-inflammatory and tissue-adhesive colloidal dressing for wound treatment. Colloids and Surfaces B: Biointerfaces, 188, 110737. https://doi.org/10.1016/j.colsurfb.2019.110737

Norizan, M.N., Shazleen, S.S., Alias, A.H., Sabaruddin, F.A., Asyraf, M.R.M., i in., 2022. Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials (Basel), 12(19), 3483. https://doi.org/10.3390/nano12193483

Olędzki, R., Walaszczyk, E., 2020. Bionanocellulose-properties, acquisition and perspectives of application in the food industry/ Bionanoceluloza-własciwości, pozyskiwanie i perspektywy zastosowania w przemyśle spożywczym. Advancements of Microbiology, 59(1), 87–103. https://doi.org/10.21307/pm-2020.59.1.008

Pacaphol, K., Aht-Ong, D., 2017. The influences of silanes on interfacial adhesion and surface properties of nanocellulose film coating on glass and aluminum substrates. Surface and Coatings Technology, 320, 70–81. https://doi.org/10.1016/j.surfcoat.2017.01.111

Perdani, C.G., Gunawan, S., 2021. A short review: Nanocellulose for smart biodegradable packaging in the food industry. IOP Conference Series: Earth and Environmental Science, 924, 012032. https://doi.org/10.1088/1755-1315/924/1/012032

Poulose, A., Parameswaranpillai, J., George, J.J., Gopi, J.A., Krishnasamy, S., i in., 2022. Nanocellulose: a fundamental material for science and technology applications. Molecules, 27(22), 8032. https://doi.org/10.3390/molecules27228032

Prabsangob, N., 2023. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value. NFS Journal, 31, 39–49. https://doi.org/10.1016/j.nfs.2023.03.002

Qin, Z., Ng, W., Ede, J., Shatkin, J.A., Feng, J., i in., 2024. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Comprehensive Reviews in Food Science and Food Safety, 23, e70049. https://doi.org/10.1111/1541-4337.70049

Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S., 2018. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chemical Engineering, 6(3), 2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

Santos, M.V., Pugina, R.S., Fontes, M.L., Onishi, B.S. D., Torres, F.R., i in., 2025. Nanocellulose-based materials for photonic applications. Optical Materials Express, 15(5), 977–1004. https://doi.org/10.1364/ome.548069

Shah, M., Hakim, N.U.D., 2025. Advances in nanocellulose proton conductivity and applications in polymer electrolyte membrane fuel cells. Next Materials, 6, 100484. https://doi.org/10.1016/j.nxmate.2025.100484

Sharma, T., Manik, G., 2025. Sustainable UV-resistant and anti-bacterial wood coating reinforced with cellulose nanofibers (CNF) and titanium dioxide nanoparticles: Synthesis, characterization and properties. International Journal of Biological Macromolecules, 140533. https://doi.org/10.1016/j.ijbiomac.2025.140533

Sheraz, M., Sun, X.F., Siddiqui, A., Wang, Y., Hu, S., i in., 2025. Cellulose-Based Electrochemical Sensors (Basel). Sensors (Basel), 25(3), 645. https://doi.org/10.3390/s25030645

Snopek, K., Broda, M., Żywicka, A., 2024. Celuloza bakteryjna – nanobiomateriał przyszłości. Kosmos (Wars), 73(3), 297–316. https://doi.org/10.36921/kos.2024_3034

Solecka, D., 2015. Ściana komórki roślinnej – struktura z przyszłością. Kosmos (Wars), 64(3), 415–429.

Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., i in., 2004. Toward a systems approach to understanding plant cell walls. Science, 306(5705), 2206–2211. https://doi.org/10.1126/science.1102765

Subhedar, A., Bhadauria, S., Ahankari, S., Kargarzadeh, H., 2021. Nanocellulose in biomedical and biosensing applications: A review. International Journal of Biological Macromolecules, 166, 587–600. https://doi.org/10.1016/j.ijbiomac.2020.10.217

Szustak, M., Gendaszewska-Darmach, E., 2021. Nanocellulose-based scaffolds for chondrogenic differentiation and expansion. Frontiers in Bioengineering and Biotechnology, 9, 736213. https://doi.org/10.3389/fbioe.2021.736213

Tang, J., Bao, L., Li, X., Chen, L., Hong, F.F., 2015. Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. Journal of Materials Chemistry B, 3(43), 8537–8547. https://doi.org/10.1039/c5tb01144b

Thomas, B., Raj, M.C., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 118(24), 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627

Vilarinho, F., Sanches Silva, A., Vaz, M.F., Farinha, J.P., 2018. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition, 58(9), 1526–1537. https://doi.org/10.1080/10408398.2016.1270254

Wang, D., Peng, H., Wu, Y., Zhang, L., Li, M., i in., 2020. Bioinspired lamellar barriers for significantly improving the flame-retardant properties of nanocellulose composites. ACS Sustainable Chemistry Engineering, 8 (11), 4331–4336. https://doi.org/10.1021/acssuschemeng.9b07745

Yahya, M., Chen, Y. W., Lee, H.V., Hassan, W.H. W., 2018. Reuse of selected lignocellulosic and processed biomasses as sustainable sources for the fabrication of nanocellulose via Ni (II)-catalyzed hydrolysis approach: a comparative study. Journal of Polymers and the Environment, 26, 2825–2844. https://doi.org/10.1007/s10924-017-1167-2

Yang, C., Zhu, Y., Tian, Z., Zhang, C., Han, X., i in., 2024a. Preparation of nanocellulose and its applications in wound dressing: A review. International Journal of Biological Macromolecules, 254, 127997. https://doi.org/10.1016/j.ijbiomac.2023.127997

Yang, Y., Dang, B., Wang, C., Chen, Y., Chen, K., i in., 2024b. Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment. Carbohydrate Polymers, 323, 121392. https://doi.org/10.1016/j.carbpol.2023.121392

Yang, Y., Li, X., Wan, C., Zhang, Z., Cao, W., i in., 2024c. A comprehensive review of cellulose nanomaterials for adsorption of wastewater pollutants: focus on dye and heavy metal Cr adsorption and oil/water separation. Collagen and Leather, 6(1), 35. https://doi.org/10.1186/s42825-024-00179-1

Zhang, E., Ma, C., Wang, T., Mu, L., Yang, Y., Chen, G., 2025a. Anisotropic nanocellulose-based aerogels for radiative cooling. International Journal of Biological Macromolecules, 295, 139580. https://doi.org/10.1016/j.ijbiomac.2025.139580

Zhang, Y., Wu, Y., Liu, Z., Zhang, Q., Lu, J., i in., 2025b. Preparation and properties of waterborne polyurethane/nanocellulose/sepiolite composite aerogel for sound absorption and heat insulation. International Journal of Biological Macromolecules, 298, 140015. https://doi.org/10.1016/j.ijbiomac.2025.140015

Zhou, J., Hsieh, Y.L., 2018. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS applied materials interfaces, 10(33), 27902–27910. https://doi.org/10.1021/acsami.8b10239

KOSMOS

Pobrania

  • PDF

Opublikowane

2025-09-30

Numer

Tom 74 Nr 3 (347) (2025): Rośliny i ludzie – wspólna historia, wspólna przyszłość. Nowe spojrzenie

Dział

Artykuły

Licencja

Prawa autorskie (c) 2026 KOSMOS

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 4
Liczba cytowań: 0

W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa