Sprzężone z białkami G receptory wolnych kwasów tłuszczowych
DOI:
https://doi.org/10.12775/KOSMOS.2025.002Słowa kluczowe
wolne kwasy tłuszczowe, receptory sprzężone z białkami G (GPCR), receptory wolnych kwasów tłuszczowych (FFAR), przekazywanie sygnału, choroby metaboliczne, terapia, terapiaAbstrakt
Receptory wolnych kwasów tłuszczowych (FFAR) należą do rodziny receptorów sprzężonych z białkami G (GPCR) – najliczniejszej grupy białek błonowych odpowiedzialnych za przekazywanie sygnałów z otoczenia komórki do jej wnętrza. W pracy scharakteryzowano cztery ludzkie receptory aktywowane przez wolne kwasy tłuszczowe: FFAR1/GPR40, FFAR2 /GPR43, FFAR3/GPR41 i FFAR4/GPR120. Przedstawiono szlaki sygnałowe uruchamiane przez te receptory oraz omówiono znaczenie FFAR w warunkach normy i patologii. Wskazano również perspektywy wykorzystania ligandów FFAR w celach terapeutycznych, między innymi w leczeniu chorób nowotworowych, cukrzycy i otyłości.
Bibliografia
Abumrad N.A., Davidson N.O. (2012). Role of the Gut in Lipid Homeostasis. Physiological Reviews 92: 1061–1085. https://doi.org/10.1152/physrev.00019.2011
Al Sharif M., Alrow P., Vitcheva V., Pajeva I., Tsakowska I. (2014). Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Research 2014: 1–13. https://doi.org/10.1155/2014/432647
Anbazhagan A.N., Priyamvada S., Gujral T., Bhattacharyya S., Alrefai W.A., i in. (2016). A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. American Journal of Physiology-Cell Physiology 310: C612–C621. https://doi.org/10.1152/ajpcell.00123.2015
Biela S., Winiarska K. (2024). Nowo odkryte funkcje mleczanu. Kosmos 72: 359–370. https://doi.org/10.36921/kos.2023_2963
Binienda A., Fichna J. (2024). Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutrition Research 127: 133–143. https://doi.org/10.1016/j.nutres.2024.05.007
De Carvalho C., Caramujo M. (2018). The Various Roles of Fatty Acids. Molecules 23: 2583. https://doi.org/10.3390/molecules23102583
Grundmann M., Bender E., Schamberger J., Eitner F. (2021). Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. International Journal of Molecular Sciences 22: 1763. https://doi.org/10.3390/ijms22041763
He J., Zhang P., Shen L., Niu L., Tan Y., i in. (2020). Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences 21: 6356. https://doi.org/10.3390/ijms21176356
Ichimura A., Hirasawa A., Poulain-Godefroy O., Bonnefond A., Hara T., i in. (2012). Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483: 350–354. https://doi.org/10.1038/nature10798
Ikeda T., Nishida A., Yamano M., Kimura I. (2022). Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacology & Therapeutics 239: 108273. https://doi.org/10.1016/j.pharmthera.2022.108273
Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. (2020). Free Fatty Acid Receptors in Health and Disease. Physiological Reviews 100: 171–210. https://doi.org/10.1152/physrev.00041.2018
Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., i in. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences 108: 8030–8035. https://doi.org/10.1073/pnas.1016088108
Kimura I., Ozawa K., Inoue D., Imamura T., Kimura K., i in. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4: 1829. https://doi.org/10.1038/ncomms2852
Kumari P., Inoue A., Chapman K., Lian P., Rosenbaum D.M. (2023). Molecular mechanism of fatty acid activation of FFAR1. Proceedings of the National Academy of Sciences 120: e2219569120. https://doi.org/10.1073/pnas.2219569120
Lagerström M.C., Schiöth H.B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews Drug Discovery 7: 339–357. https://doi.org/10.1038/nrd2518
Lee Y.J., Son S.E., Im D.S. (2024). Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. International Immunopharmacology 127: 111428. https://doi.org/10.1016/j.intimp.2023.111428
Lis J., Fichna J., Tarasiuk-Zawadzka A. (2025). The role of free fatty acid receptors activation in pancreatic disorders. Molecular Aspects of Medicine 104: 101386. https://doi.org/10.1016/j.mam.2025.101386
Loona D.P.S., Das B., Kaur R., Kumar R., Yadav A.K. (2023). Free Fatty Acid Receptors (FFARs): Emerging Therapeutic Targets for the Management of Diabetes Mellitus. Current Medicinal Chemistry 30: 3404–3440. https://doi.org/10.2174/0929867329666220927113614
Melhem H., Kaya B., Ayata C.K., Hruz P., Niess J.H. (2019). Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells 8: 450. https://doi.org/10.3390/cells8050450
Milligan G., Alvarez-Curto E., Hudson B.D., Prihandoko R., Tobin A.B. (2017). FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends in Pharmacological Sciences 38: 809–821. https://doi.org/10.1016/j.tips.2017.06.006
Rady B., Liu J., Huang H., Bakaj I., Qi J., i in. (2022). A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Frontiers in Endocrinology 13: 1061688. https://doi.org/10.3389/fendo.2022.1061688
Raptis D.A., Limani P., Jang J.H., Ungethüm U., Tschuor C., i in. (2014). GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. Journal of Hepatology 60: 625–632. https://doi.org/10.1016/j.jhep.2013.11.006
Senatorov I.S., Moniri N.H. (2018). The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochemical Pharmacology 150: 170–180. https://doi.org/10.1016/j.bcp.2018.02.011
Talukdar S., Olefsky J.M., Osborn O. (2011). Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends in Pharmacological Sciences 32: 543–550. https://doi.org/10.1016/j.tips.2011.04.004
Tan J.K., McKenzie C., Mariño E., Macia L., Mackay C.R. (2017). Metabolite-Sensing G Protein-Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology 35: 371–402. https://doi.org/10.1146/annurev-immunol-051116-052235
Yamamoto Y., Narumi K., Yamagishi N., Yonejima Y., Iseki K., i in. (2025). HYA ameliorated postprandial hyperglycemia in type 1 diabetes model rats with bolus insulin treatment. Acta Diabetologica 62: 1337–1345. https://doi.org/10.1007/s00592-025-02459-6
Yang Y.M., Kuen D.S., Chung Y., Kurose H., Kim S.G. (2020). Ga12/13 signaling in metabolic diseases. Experimental & Molecular Medicine 52: 896–910. https://doi.org/10.1038/s12276-020-0454-5
Yu F., Zong B., Ji L., Sun P., Jia D., i in. (2024). Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. International Journal of Molecular Sciences 25: 7853. https://doi.org/10.3390/ijms25147853
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2025 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 65
Liczba cytowań: 0