Surface Modification of Membranes for Fouling Reduction
DOI:
https://doi.org/10.12775/Cl.2015.008Keywords
Fouling, surface modification, polyelectrolytes, grafting, critical fluxAbstract
Despite great effort that has been made to reduce and understand fouling, this phenomenon is still a major problem in membrane applications. Numerous methods, both from a chemical and engineering point of view, have been introduced to overcome this problem. In this contribution, we report on the modification of membranes with polyelectrolytes and polyelectrolyte multilayers utilizing two of the mentioned strategies. The effect of surface modification on the fouling behavior as well as on the critical flux will be discussed on two examples, microfiltration membranes and RO membranes.
References
Belfer S., Purinson Y., Fainshtain R., Radchenko Y., Kedem O., Surface modification of commercial composite polyamide reverse osmosis membranes, J. Membr. Sci. 139 (1998) 175-181.
Benhabbour R.S., Sheardown H., Adronov A., Protein Resistance of PEG-Functionalized Dendronized Surfaces: Effect of PEG Molecular Weight and Dendron Generation, Macromolecules 41 (2008) 4817-4826.
Chamoulaud G., Bélanger D., Chemical modification of the surface of a sulfonated membrane by formation of a sulfonamide bond, Langmuir 20 (2004) 4989-4995.
Cho S.A., Cho E.A., Oh I., Kim H., Ha H.Y., Hong S., Ju J.B., Surface modified Nafion membrane by ion beam bombardement for fuel cell applications, J. Power Sources 155 (2006) 286-290.
Johnsen K., Kirkhorn S., Olafsen K., Redford K., Stori A., Modification of Polyolefi Surfaces by Plasma-Inducted Grafting, J. Appl. Polym. Sci. 59 (1996) 1651-1657.
Kim J., Park P., Lee C., Kwon H., Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: Graft polymerization and cross-linking followed by functional group substitution, J. Membr. Sci. 321 (2008) 190-198.
Mougenot P., Koch M., Dupont I., Schneider Y., Marchand-Brynaer J., Surface Functionalization of Polyethylene Teraphthalate Film and Membranes by Controlled Wet Chemistry, J. Coll. Interface Sci. 177 (1996) 162-170.
Rieser T., Lunkwitz K., Berwald S., Meier-Haack J., Müller M., Cassel F., Dioszeghy Z., Simon F., in: I. Pinnau, B.D. Freeman (Eds.) Membrane Formation Modification, American Chemical Society, Washington DC 2000 pp. 189-204, ISBN 0-8412-3604-6.
Ulbricht M., Advanced functional polymer membranes, Polymer (2006) 2217-2262.
Berwald, S.; Lenk, W.; Rieser, T.; Meier-Haack, J.; Eichhorn, K.-J.; Lunkwitz, K., Modifizierung von Polyaramid-Ultrafiltratonsmembranen durch Elektronenbestrahlung, Angew. Makromol. Chem. 273 (1999) 47-52.
Carroll T., Booker N. A., Meier-Haack J., Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water, J. Membr. Sci. 203 (2002) 3-13.
Meier-Haack J., Derenko S., Seng J., Fouling reduction by graft-modification with hydrophilic polymers, Sep. Sci. Technol. 42 (2007) 2881-2890.
Field R.W., Wu D., Howell J.A., Gupta B.B., Critical flux concept for microfiltration fouling, J. Membr. Sci. 100 (1995) 259-272.
Howell J.A., Sub-critical flux operation of microfiltration, J. Membr. Sci. 107 (1995) 165-171.
Bacchin P., Aimar P., Field R.W., Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci. 281 (2006) 42 - 69.
van der Marel P., Zwijnenburg A., Kemperman A., Wessling M., Temmink H., van der Meer W., An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor, J. Membr. Sci. 332 (2009) 24 - 29.
Nikolaeva D., Langner C., Abdel Rehim M., Voit B., Meier-Haack J., Hydrogel surface modification of reverse osmosis membranes, J. Membr. Sci. 476 (2015) 264-276.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 533
Number of citations: 0