Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Deutsch
    • Język Polski
    • Español (España)
    • Italiano
    • Français (Canada)
    • Čeština
    • Français (France)
    • Hrvatski
    • Srpski
    • Українська
  • Menu
  • Strona domowa
  • Forthcoming
  • Aktualny numer
  • Archiwum
  • PUBLICATION ETHICS
  • Ogłoszenia
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Copernican Journal of Finance & Accounting

INVESTORS’ OVERCONFIDENCE IN THE STOCK MARKET
  • Strona domowa
  • /
  • INVESTORS’ OVERCONFIDENCE IN THE STOCK MARKET
  1. Strona domowa /
  2. Archiwum /
  3. Tom 11 Nr 4 (2022) /
  4. Artykuły

INVESTORS’ OVERCONFIDENCE IN THE STOCK MARKET

Autor

  • Rajasekharan Ganesh St. Mary’s College, Sulthan Bathery https://orcid.org/0000-0002-4539-9997
  • S. Thiyagarajan Pondicherry University
  • Gopala Vasudevan University of Massachusetts Dartmouth https://orcid.org/0000-0002-3297-7663
  • G. Naresh Indian Institute of Management Ranchi https://orcid.org/0000-0003-0439-8303

DOI:

https://doi.org/10.12775/CJFA.2022.021

Słowa kluczowe

Overconfidence Bias, Mental Shortcuts, Vector autoregression (VAR), Impulse Response Function, Nifty 50 Index

Abstrakt

An investor would normally depend on technical or/and fundamental analysis to make his/her investment decision in the secondary market. But in most cases the investor may not have time to do these analyses, understand the market or stock and then make the decision, therefore, they often end up taking irrational decisions. In some cases, the investors take these irrational decisions on the basis of the overconfidence they have concerning the information they possess. These investors are termed to bear overconfidence bias. The study aims to examine the influence of overconfidence bias in the Indian stock market. The study employed Vector Autoregression (VAR) methodology and impulse response function to know how long the bias persists in the market once the overconfidence bias is influenced by the investor. The results of the study show enough evidence to point out the influence of overconfidence bias in the market and it persists for more than 110 days. The study also finds out Efficient Market Hypothesis does not hold good. Our study period includes the time period since globalization of the Indian stock market and it also covers several periods of stress including the global financial crisis of 2007–08 and COVID-19 period.

Bibliografia

Azam, M.Q., Hashmi, N.I., Hawaldar, I.T., Alam, M.S., & Baig, M.A. (2022). TheCOVID-19 Pandemic and Overconfidence Bias: The Case of Cyclical and Defensive Sectors. Risks, 10(3), 56-70. http://dx.doi.org/10.3390/risks10030056.

Barber, B.M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. Quarterly Journal of Economics, 116(1), 261-292. http://dx.doi.org/10.2139/ssrn.139415.

Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1(1), 1053-1128. http://dx.doi.org/10.3386/w9222.

Bessembinder, H., Chan, K., & Seguin, P.J. (1996). An empirical examination of information, differences of opinion, and trading activity. Journal of Financial Economics, 40(1), 105-134. http://dx.doi.org/10.1016/0304-405x(95)00839-7.

Bondt, W.F., & Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3), 793-805. http://dx.doi.org/10.1111/j.1540-6261.1985.tb05004.x.

Bondt, W.F., & Thaler, R. (1987). Further evidence on investor overreaction and stock market seasonality. The Journal of Finance, 42(3), 557-581. http://dx.doi.org/10.1111/j.1540-6261.1987.tb04569.x.

Chuang, W.I., & Lee, B.S. (2006). An empirical evaluation of the overconfidence hypothesis. Journal of Banking & Finance, 30(9), 2489-2515. http://dx.doi.org/10.1016/j.jbankfin.2005.08.007.

Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor psychology and security market under‐and overreactions. The Journal of Finance, 53(6), 1839-1885. http://dx.doi.org/10.1111/0022-1082.00077.

Dittrich, D.A., Güth, W., & Maciejovsky, B. (2005). Overconfidence in investment decisions: An experimental approach. The European Journal of Finance, 11(6), 471-491. http://dx.doi.org/10.1080/1351847042000255643.

Gervais, S., & Odean, T. (2001). Learning to be Overconfident. The Review of Financial Studies, 14(1), 1-27. http://dx.doi.org/10.1093/rfs/14.1.1.

Glaser, M., & Weber, M. (2007). Overconfidence and trading volume. The Geneva Risk and Insurance Review, 32(1), 1-36. http://dx.doi.org/10.1007/s10713-007-0003-3.

Glaser, M., & Weber, M. (2009). Which past returns affect trading volume? Journal of Financial Markets, 12(1), 1-31. http://dx.doi.org/10.1016/j.finmar.2008.03.001.

Griffin, J.M., Nardari, F., & Stulz, R.M. (2007). Do investors trade more when stocks have performed well? Evidence from 46 countries. Review of Financial Studies, 20(3), 905-951. http://dx.doi.org/10.1093/rfs/hhl019.

Huang, J., Wang, Y., Fan, Y., & Li, H. (2022). Gauging the effect of investor overconfidence on trading volume from the perspective of the relationship between lagged stock returns and current trading volume. International Finance, 25(1), 103-123. http://dx.doi.org/10.1111/infi.12405.

Jlassi, M., Naoui, K., & Mansour, W. (2014). Overconfidence Behavior and Dynamic Market Volatility: Evidence from International Data. Procedia Economics and Finance,13(1), 128-142. http://dx.doi.org/10.1016/S2212-5671(14)00435-3.

Karpoff, J.M. (1987). The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis, 22(01), 109-126. http://dx.doi.org/10.2307/2330874.

Kamesaka, A., Nofsinger, J. R., & Kawakita, H. (2003). Investment patterns and performance of investor groups in Japan. Pacific-Basin Finance Journal, 11(1), 1-22. http://dx.doi.org/10.1016/S0927-538X(02)00095-1.

Koutmos, D., & Song, W. (2014). Speculative Dynamics and Price Behaviour in the Shanghai Stock Exchange. Research in International Business and Finance, 31(1), 74- 86. http://dx.doi.org/10.1016/j.ribaf.2013.11.006.

Lee, C., Shleifer, A., & Thaler, R.H. (1991). Investor sentiment and the closed‐end fund puzzle. The Journal of Finance, 46(1), 75-109. http://dx.doi.org/10.1111/j.1540-6261.1991tb03746.x.

Odean, T. (1998a). Volume, volatility, price, and profit when all traders are above average. The Journal of Finance, 53(6), 1887-1934. http://dx.doi.org/10.1111/0022-1082.00078.

Odean, T. (1998b). Are investors reluctant to realize their losses? The Journal of Finance, 53(5), 1775-1798. http://dx.doi.org/10.1111/0022-1082.00072.

Odean, T. (1999). Do Investors Trade Too Much? American Economic Review, 89(5), 1279- 1298. http://dx.doi.org/10.1257/aer.89.5.1279.

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53(1), 61-65. http://dx.doi.org/10.1086/296071.

Pompian, M.M. (2008). Behavioral finance and wealth management. How to Build Optimal Portfolios That Account for Investor Biases. Hoboken, New Jersey: John Wiley & Sons Inc.

Salma, Z., & Ezzeddine, A. (2008). Overconfidence And trading volume: Evidence from an emergent market. Annales Universitatis Apulensis Series Oeconomica, 1(10),378- 387.

Singh, H.P., Goyal, N., & Kumar, S. (2016). Behavioural Biases in Investment Decisions: An exploration of the role of Gender. Indian Journal of Finance, 10(6), 51-62. http://dx.doi.org/10.17010/ijf/2016/v10i6/94879.

Siwar, E. (2011). The impact of overconfidence bias and disposition effect on the volume of transaction and the volatility of the French stock market. Journal of Applied Economic Sciences, 1(15), 61-83.

Soni, K., & Desai, M. (2021). Stock Prices: Effect of Behavioral Biases on Investor’s mindset in Gujarat State, India. Copernican Journal of Finance & Accounting, 10(1), 67-79. http://dx.doi.org/10.12775/CJFA.2021.004.

Statman, M., Thorley, S., & Vorkink, K. (2006). Investor Overconfidence and Trading Volume. The Review of Financial Studies, 19(4), 1531-1565. http://dx.doi.org/10.1093/rfs/hhj032.

Ul Abdin, S.Z., Qureshi, F., Iqbal, J., & Sultana, S. (2022). Overconfidence bias and investment performance: A mediating effect of risk propensity. Borsa Istanbul Review ,22(4), 780-793. http://dx.doi.org/10.1016/j.bir.2022.03.001.

Copernican Journal of Finance & Accounting

Pobrania

  • PDF (English)

Opublikowane

2023-07-19

Jak cytować

1.
RAJASEKHARAN GANESH, S. THIYAGARAJAN, GOPALA VASUDEVAN & G. NARESH. INVESTORS’ OVERCONFIDENCE IN THE STOCK MARKET. Copernican Journal of Finance & Accounting [online]. 19 lipiec 2023, T. 11, nr 4, s. 107–123. [udostępniono 5.7.2025]. DOI 10.12775/CJFA.2022.021.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 11 Nr 4 (2022)

Dział

Artykuły

Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 734
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Tagi

Szukaj przy pomocy tagu:

Overconfidence Bias, Mental Shortcuts, Vector autoregression (VAR), Impulse Response Function, Nifty 50 Index

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa