Rayleigh-Bénard problem for thermomicropolar fluids

Piotr Kalita, Grzegorz Łukaszewicz, Jakub Siemianowski

DOI: http://dx.doi.org/10.12775/TMNA.2018.012


The two-dimensional Rayleigh-Bénard problem for a thermomicropolar fluids model is~considered.
The existence of suitable weak solutions which may not be unique, and the existence of the unique strong solution are proved.
The global attractor for the m-semiflow associated with weak solutions and the global attractor for semiflow associated with strong solutions are shown to be equal.


Rayleigh-Bénard convection; thermomicropolar fluid; global attractor; m-semiflow

Full Text:



R.A. Adams and J.J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, 2003.

M. Boukrouche, G. Lukaszewicz and J. Real, On pullback attractors for a class of two-dimensional turbulent shear flows, Internat. J. Engrg. Sci. 44 (2006), 830–844.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math. 171 (2010) 1903–1930.

V.V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst. 32 (2012), 2079–2088.

A. Cheskidov and M. Dai, The existence of a global attractor for the forced critical surface quasi-geostrophic equation in L2 , J. Math. Fluid Mech. (2017), DOI: 10.1007/s00021017-0324-7.

P. Constantin, M. Coti Zelati and V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity 29 (2016), 298–318.

P. Constantin and Ch. Doering, Heat transfer in convective turbulence, Nonlinearity 9 (1996), 1049–1060.

M. Coti Zelati, On the theory of global attractors and Lyapunov functionals, Set-Valued Var. Anal. 21 (2013), 127–149.

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM J. Math. Anal. 47 (2015), 1530–1561.

M. Coti Zelati and P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 1957–1873.

T. Dlotko and C.Y. Sun, 2D Quasi-geostrophic equation; sub-critical and critical cases, Nonlinear Anal. 150 (2017), 38–60.

Ch. Doering and P.Constantin, Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E 53 (1996), 5957–5981.

A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1–18.

A.C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl. 38 (1972), 480–496.

A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer, New York, 2001.

L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

P. Kalita, J.A. Langa and G. Lukaszewicz, Micropolar meets Newtonian. The Rayleigh–Bénard problem. (submitted)

P. Kalita and G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Anal. 101 (2014), 124–143.

P. Kalita and G. Lukaszewicz, Navier–Stokes Equations. An Introduction with Applications, Springer, Cham, 2016.

J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et applications, Vol. 1, Dunod, Paris, 1968.

G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Birkhäuser, Boston, MA, 1999.

G. Lukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Modelling 34 (2001), 487–509,

V.S. Melnik and J. Valero, On attractors of multivalued semiflows and differential inclusions, Set-Valued Anal. 6 (1998), 83–111.

L. E. Payne and B. Straughan, Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid, Int. J. Engng. Sci. 27 (1989), 827–836.

J.C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.

B. Rummler, The eigenfunctions of the Stokes operator in special domains. II, Z. Angew. Math. Mech. 77 (1997), 669–675.

J. Simon, Compact sets in the space Lp (0, T ; B), Ann. Mat. Pura Appl. (4) 146 (1987), 65–96.

A. Tarasińska, Global attractor for heat convection problem in a micropolar fluid, Math. Methods Appl. Sci. 29 (2006), 1215–1236.

A. Tarasińska, Pullback attractor for heat convection problem in a micropolar fluid, Nonlinear Anal. Real World Appl. 11 (2010), 1458–1471.

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.

R. Temam, Navier–Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1977.

X. Wang, Bound on vertical heat transport at large Prandtl number, Phys. D 237 (2008), 854–858.

C. Zhao, W. Sun, and C.H. Hsu, Pullback dynamical behaviors of the non-autonomous micropolar fluid flows, Dyn. Partial Differ. Equ. 12 (2015), 265–288.


  • There are currently no refbacks.

Partnerzy platformy czasopism