Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A note on Conley index and some parabolic problems with locally large diffusion
  • Home
  • /
  • A note on Conley index and some parabolic problems with locally large diffusion
  1. Home /
  2. Archives /
  3. Vol 50, No 2 (December 2017) /
  4. Articles

A note on Conley index and some parabolic problems with locally large diffusion

Authors

  • Maria C. Carbinatto
  • Krzysztof P. Rybakowski

Keywords

Conley index, homology index braids, localized large diffusion, singular perturbations

Abstract

We prove singular Conley index continuation results for a class of scalar parabolic equations with locally large diffusion considered by Fusco \cite{F} and Carvalho and Pereira \cite{CP}.

References

M.C. Carbinatto and K.P. Rybakowski, Continuation of the connection matrix in singular perturbation problems, Ergodic Theory Dynam. Systems 26 (2006), 1021–1059.

M.C. Carbinatto and K.P. Rybakowski, Localized singularities and Conley index, Topol. Methods Nonlinear Anal. 37 (2011), 1–36.

M.C. Carbinatto and K.P. Rybakowski, On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions, Topol. Methods Nonlinear Anal. 40 (2012), 1–28.

A.N. Carvalho and J. Hale, Large diffusion with dispersion, Nonlinear Anal. 17 (1991), 1139–1151.

A.N. Carvalho and A.L. Pereira, A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations, J. Differential Equations 112 (1994), 81–130.

C.C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Amer. Math. Soc., vol. 38, Providence, 1978.

G. Fusco, On the explicit construction of an ODE which has the same dynamics as scalar parabolic PDE, J. Differential Equations 69 (1987), 85–110.

J. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986), 455–466.

J. Hale and C. Rocha, Varying boundary conditions with large diffusivity, J. Math. Pures Appl. 66 (1987), 139–158.

A. Rodrı́guez-Bernal, Localized spatial homogenization and large diffusion, SIAM J. Math. Anal. 29 (1998), 1361–1380.

A. Rodrı́guez-Bernal and R. Willie, Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic equation, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 385–409.

K.P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269 (1982), 351–382.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2017-10-28

How to Cite

1.
CARBINATTO, Maria C. and RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis. Online. 28 October 2017. Vol. 50, no. 2, pp. 741 - 755. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 50, No 2 (December 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop