Attractors for singularly perturbed damped wave equations on unbounded domains

Martino Prizzi, Krzysztof P. Rybakowski

DOI: http://dx.doi.org/10.12775/TMNA.2008.032

Abstract


For an arbitrary unbounded domain $\Omega\subset\mathbb R^3$
and for $\varepsilon> 0$, we consider the damped hyperbolic equations
$$
\varepsilon u_{tt}+ u_t+\beta(x)u- \sum_{ij}(a_{ij}(x)
u_{x_j})_{x_i}=f(x,u),
\leqno{(\text{\rm H}_\varepsilon)}
$$
with Dirichlet boundary condition on $\partial\Omega$, and their singular limit as
$\varepsilon\to0$.
Under suitable assumptions, (H$_\varepsilon)$ possesses
a compact global attractor ${\mathcal A}_\varepsilon$ in $H^1_0(\Omega)\times
L^2(\Omega)$, while the limiting parabolic equation possesses
a compact global attractor $\widetilde{\mathcal A_0}$ in
$H^1_0(\Omega)$, which can be embedded into a compact set ${\Cal
A_0}\subset H^1_0(\Omega)\times L^2(\Omega)$. We show that, as
$\varepsilon\to0$, the family $({\mathcal A_\varepsilon})_{\varepsilon\in[0,\infty[}$ is
upper semicontinuous with respect to the topology of
$H^1_0(\Omega)\times H^{-1}(\Omega)$.

Keywords


Attractors; singular perturbations; reaction-diffusion equations; damped wave equations

Full Text:

FULL TEXT

Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism