Microeconometric Analysis of Telecommunication Services Market with the use of SARIMA Models

Paweł Kaczmarczyk

DOI: http://dx.doi.org/10.12775/DEM.2017.003

Abstract


The paper presents the results of testing the effectiveness of the multi sectional model in the short-term forecasting of hourly demand for telephone services. The model was based on the integration of the linear regression model with dichotomous independent variables and the SARIMA model. The regression was used as a filter of modelled variability of the demand. The SARIMA was applied to model residual variability. The research shows that the proposed integration provides a greater possibility of approximation and prediction in comparison to the non-supported linear regression model. The results of the study provide support for operational planning of telecommunications operator.

Keywords


Decision Support System; dichotomous regression; SARIMA model, forecasting.

Full Text:

PDF

References


Begg, I. (2010), Europe 2020 and Employment. Intereconomics, 45, 146–151.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (1994), Time Series Analysis. Forecasting and Control, Prentice Hall, Englewood Clifs.

Dittmann, P. (2004), Prognozowanie w przedsiębiorstwie. Metody i ich zastosowanie (Forecasting in Enterprise. Methods and their Application), Oficyna Ekonomiczna, Kraków.

Dittmann, P., Szabela-Pasierbińska E., Dittmann I., Szpulak A. (2011), Prognozowanie w zarządzaniu sprzedażą i finansami przedsiębiorstwa (Forecasting in Sales Management and Finance of Enterprise), Wolters Kluwer Polska, Warszawa.

Europe 2020. A strategy for Smart, Sustainable and Inclusive Growth. Communication from the Commission, European Commission, Brussels 3.3.2010, http://www.buildup.eu/sites/default/files/content/com2010_2020en01.pdf (22.07.2017).

Kaczmarczyk, P. (2016), Integrated Model of Demand for Telephone Services in Terms of Microeconometrics, Folia Oeconomica Stetinensia, (16)2, 72–83, DOI: https://doi.org/10.1515/foli-2016-0026box.

Kufel, T. (2010), Ekonometryczna analiza cykliczności procesów gospodarczych o wysokiej częstotliwości obserwowania (Econometric Analysis of the Cyclicality of Economic Processes at High Frequency of Observations), Wydawnictwo Naukowe UMK, Toruń.

Makridakis, S., Wheelwright, S. C. (1989), Forecasting Methods for Management, J. Wiley, New York.

Makridakis, S., Wheelwright, S. C., Hyndman, R. J. (1998), Forecasting Methods and Applications, J. Wiley, New York.

McLeod, A. I., Sales, P. R. H. (1983), An Algorithm for Approximate Likelihood Calculation of ARMA and Seasonal ARMA Models, Applied Statistics, 32, 211–223.

Melard, G. (1984), A Fast Algorithm for the Exact Likelihood of Autoregressive-Moving Average Models. Applied Statistics, 33, 104–114, DOI: http://dx.doi.org/10.2307/2347672.

Muraszkiewicz, M. (2000), Eksploracja danych dla telekomunikacji (Data Mining for Telecommunication), http://www.ploug.org.pl/showhtml.php?file=konf_00/materialy_00, (2.07.2017).

Nadolny, M. (2011), Podstawowe modele dyfuzji dóbr telekomunikacyjnych (Basic Models of Telecommunications Goods Diffusion). In Łyka J. (ed.), Wybrane modele matematyczne w ekonomii. Globalizacja i rozwój (Selected Mathematical Models in Economics. Globalisation and Growth). Wydawnictwo Uniwersytetu Ekonomicznego, Wrocław.

Presidency Conclusions. Lisbon European Council of 23rd and 24th March 2000, http://www.europarl.europa.eu/summits/lis1_en.htm (24.06.2017).

Wiśniewski, J.W. (2009), Mikroekonometria (Microeconometrics), Wydawnictwo Naukowe UMK, Toruń.






ISSN (print) 1234-3862
ISSN (online) 2450-7067

Partnerzy platformy czasopism