Volatility Estimators in Econometric Analysis of Risk Transfer on Capital Markets

Marcin Fałdziński, Magdalena Osińska

DOI: http://dx.doi.org/10.12775/DEM.2016.002

Abstract


The purpose of the research is to compare the performance of different volatility measures while used in testing for causality in risk between several emerging and mature capital markets. The following volatility estimators are considered: Parkinson, Garman-Klass, Rogers-Satchell, Garman-Klass-Yang-Zhang and Yang-Zhang and the AR-GARCH(1,1)-t model. Additionally, the extreme value theory is also applied. Several emerging capital markets are checked for being the source of the risk for both emerging and developed markets. The group of emerging markets includes the most intensively  growing economies in the world. The final results are such as the number of relationships between the markets is considerably lower when the methods taken from the extreme value theory are used.

Keywords


causality in risk; extreme value theory; growing emerging economies; risk transfer; volatility

Full Text:

PDF

References


Angelidis, T., Degiannakis, S. (2006), Backtesting VaR Models: An Expected Shortfall Ap-proach, Working Papers No 701, University of Crete, Athens University of Economics and Business, http://econpapers.repec.org/paper/crtwpaper/0701.htm (01.10.2016)

Balkema, A. A., De Haan, L. (1974), Residual Life Time at Great Age, Annals of Probability, Vol.2, No. 5, 792–804, DOI: http://dx.doi.org/10.1214/aop/1176996548.

Blanco, C., Ihle, G. (1998), How Good is Your VaR? Using Backtesting to Assess System Performance, Financial Engineering News, August, 1–2.

Burzała, M. (2014), Wybrane metody badania efektów zarażania na rynku kapitałowym, Wyd. Uniwersytetu Ekonomicznego w Poznaniu, Poznań,

Candelon, B., Joëts, M., Tokpavi, S. (2013), Testing for Granger Causality in Distribution Tails: An Application to Oil Markets Integration, Economic Modelling, 31, 276–285, DOI: http://dx.doi.org/10.1016/j.econmod.2012.11.049.

Dowd, K. (2004), Measuring Market Risk, John Wiley & Sons, West Sussex, DOI: http://dx.doi.org/10.1002/9781118673485.

Dufour, J.-M. (2006), Monte Carlo Tests with Nuisance Parameters: a General Approach to Finite Sample Inference and Nonstandard Asymptotics, Journal of Econometrics, 27 (2), 443–477, DOI: http://dx.doi.org/10.1016/j.jeconom.2005.06.007.

Fałdziński, M. (2011), On The Empirical Importance Of The Spectral Risk Measure With Extreme Value Theory Approach. Financial Markets Principles of Modelling Fore-casting and Decision-Making, FindEcon, Lodz, 73–86,

Fałdziński, M. (2014), Teoria wartości ekstremalnych w ekonometrii finansowej, Wydawnic-two UMK, Toruń,

Fałdziński, M., Osińska, M., Zdanowicz, T. (2012), Detecting Risk Transfer in Financial Markets using Different Risk Measures, Central European Journal of Economic Mod-elling and Econometrics, vol. 4, issue 1, 45–64,

Forbes, K. J., Rigobon, R. (2002), No contagion, only interdependence: measuring stock market comovements, The Journal of Finance, 57(5), 2223–2261, DOI: http://dx.doi.org/10.1111/0022-1082.00494.

Garman, M.B., Klass, M.J. (1980), On the estimation of Security Price Volatilities from His-torical data, Journal of Business 53, 67–78,

Hong, Y. (2001), A test for volatility spillover with applications to exchange rates, Journal of Econometrics, 103(1–2), 183–224, DOI: http://dx.doi.org/10.1016/S0304-4076(01)00043-4.

Hong, Y., Liu, Y., Wang, S. (2009), Granger causality in risk and detection of extreme risk spillover between financial markets, Journal of Econometrics, 150(2), 271–287, DOI: http://dx.doi.org/10.1016/j.jeconom.2008.12.013.

Lardy, N. (1998), China and the Asian Contagion, Foreign Affairs, 77, 78–88, DOI: http://dx.doi.org/10.2307/20048967.

Lopez, J.A. (1998), Regulatory evaluation of value-at-risk models, Federal Reserve Bank of New York Economic Policy Review, October, 119–124, DOI: http://dx.doi.org/10.21314/JOR.1999.005.

McNeil, J.A., Frey, F. (2000), Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: an Extreme Value Approach, Journal of Empirical Finance, 7, 271–300, DOI: http://dx.doi.org/10.1016/S0927-5398(00)00012-8.

Osińska, M., Fałdziński, M., Zdanowicz, T. (2012), Econometric Analysis of the Risk Transfer in Capital Markets. The Case of China, Argumenta Oeconomica, 2(29), 139–164,

Parkinson, M. (1980), The extreme value method for estimating the variance of the rate of return, Journal of Business 53, 61–65, DOI: http://dx.doi.org/10.1086/296071.

Peek, J., Rosengre, E.S. (1997), The International Transmission of Financial Shocks: The Case of Japan, The American Economic Review, 87, 495–505, DOI: http://dx.doi.org/10.2139/ssrn.36583.

Pickands, J. (1975), Statistical Inference Using Extreme Order Statistics, Annals of Statistics, 3(1), 119–131,

Rogers, L.C.G., Satchell S.E. (1991), Estimating Variance from High, Low and Closing Prices, Annals of Applied Probability 1, 504–512, DOI: http://dx.doi.org/10.1214/aoap/1177005835.

Sarma, M., Thomas, S., Shah, A. (2003), Selection of Value-at-Risk Models, Journal of Forecasting, 22, 337–358, DOI: http://dx.doi.org/10.1002/for.868.

Yang, D., Zhang, Q. (2000), Drift Independent Volatility Estimation based on High, Low, Open and Close Prices, Journal of Business 73, 477–492, DOI: http://dx.doi.org/10.1086/209650.

Zakoian, J.-M. (1994), Threshold Heteroscedastic Models, Journal of Economic Dynamics and Control, 18 (5), 931–955.






ISSN (print) 1234-3862
ISSN (online) 2450-7067

Partnerzy platformy czasopism