sedaDNA – przeszłość środowiska zapisana w kodzie genetycznym
DOI:
https://doi.org/10.12775/KOSMOS.2024.004Słowa kluczowe
sedaDNA, osady jeziorne, kopalne DNA, paleoekologia, biogeografiaAbstrakt
Osady gromadzące się na dnie zbiorników wodnych stanowią cenne źródło informacji o przeszłości środowiska przyrodniczego. Tradycyjne badania paleoekologiczne opierały się głównie na analizie zachowanych w sedymentach pyłków roślin i makroszczątków. W międzyczasie następował intensywny rozwój genetyki, a w wielu dziedzinach nauk przyrodniczych zaczęto korzystać z informacji zawartych w DNA organizmów. Nowe metody izolacji i sekwencjonowania DNA umożliwiły również wykorzystanie informacji genetycznej zachowanej w osadach (tzw. sedaDNA, sedimentary ancient DNA) w badaniach środowiskowych. Dzięki temu możliwa stała się m.in. detekcja organizmów, które nie zostawiają śladów wykrywanych tradycyjnymi metodami paleoekologii oraz zwiększenie rozdzielczości prowadzonych badań. DNA z czasem ulega degradacji, co sprawia, że uzyskanie informacji z takiego materiału jest problematyczne. Obecnie badania w dziedzinie paleogenetyki skupiają się nie tylko na rozwoju nowych metod sekwencjonowania, ale również na czynnikach wpływających na zachowanie sedaDNA w środowisku. Takie wieloaspektowe podejście zwiększa efektywność planowania analiz – coraz lepiej rozumiemy, gdzie prawdopodobieństwo zachowania DNA jest największe oraz jakie metody stosować, aby skutecznie włączyć dane genetyczne do badań paleoekologicznych i biogeograficznych.
Bibliografia
Allentoft M. E., Collins M., Harker D., Haile J., Oskam C. L. i współaut., 2012. The half-life of DNA in bone: Measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279, 4724–4733. Doi: https://doi.org/10.1098/rspb.2012.1745.
Alsos I. G., Boussange V., Rijal D. P., Beaulieu M., Brown A. G., Herzschuh U., 2024. Using ancient sedimentary DNA to forecast ecosystem trajectories under climate change. Phil. Trans. R. Soc. B 379: 20230017. Doi: https://doi.org/10.1098/rstb.2023.0017.
Alsos I. G., Ehrich D., Seidenkrantz M. S., Bennike O., Kirchhefer A. J., Geirsdottir A., 2016. The role of sea ice for vascular plant dispersal in the Arctic. Biol. Lett. 12, 10–13. Doi: https://doi.org/10.1098/rsbl.2016.0264.
Alsos I. G., Lammers Y., Kjellman S. E., Merkel M. K. F., Bender E. M. i współaut., 2021. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quat. Sci. Rev. 259: 106903. Doi: https://doi.org/10.1016/j.quascirev.2021.106903.
Alsos I. G., Rijal D. P., Ehrich D., Karger D. N., Yoccoz N. G. i współaut., 2022. Postglacial species arrival and diversity buildup of northern ecosystems took millennia. Sci. Adv. 8(39): eabo7434. Doi: https://www.science.org/doi/10.1126/sciadv.abo7434.
Anderson-Carpenter L. L., McLachlan J. S., Jackson S. T., Kuch M., Lumibao C. Y., Poinar H. N., 2011. Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11: 30. Doi: https://doi.org/10.1186/1471-2148-11-30.
Baisheva I., Pestryakova L., Levina S., Glückler R., Biskaborn B. K. i współaut., 2023. Permafrost-thaw lake development in Central Yakutia: sedimentary ancient DNA and element analyses from a Holocene sediment record. J. Paleolimnol. 70, 95–112. Doi: https://doi.org/10.1007/s10933-023-00285-w.
Boessenkool S., Mcglynn G., Epp L. S., Taylor D., Pimentel, M. i współaut., 2013. Use of Ancient Sedimentary DNA as a Novel Conservation Tool for High-Altitude Tropical Biodiversity. Conserv. Biol.28, 446–455. Doi: https://doi.org/10.1111/cobi.12195.
Capo E., Barouillet C. i współaut., 2024. Tracking Environmental Change Using Lake Sediments Volume 6: Sedimentary DNA. In Developments in Paleoenvironmental Research (Vol. 21). Doi: https://doi.org/10.1007/978-3-031-43799-1.
Capo E., Giguet-Covex C., Rouillard A., Nota K., Heintzman P. D. i współaut., 2021. Lake sedimentary dna research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quat. 4(1): 6. Doi: https://doi.org/10.3390/quat4010006.
Clare E. L., Economou C. K., Bennett F. J., Dyer C. E., Adams K. i współaut., 2022. Measuring biodiversity from DNA in the air. Curr. Biol. 32, 693–700. Doi: https://doi.org/10.1016/j.cub.2021.11.064.
Clarke C. L., Alsos I. G., Edwards M. E., Paus A., Gielly L. i współaut., 2020. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quaternary Sci. Rev. 247: 106564. Doi: https://doi.org/10.1016/j.quascirev.2020.106564.
da Silva Coelho F.A., Gill S., Tomlin C., Papavassiliou M., Farley S. i współaut., 2023. Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska. Mol. Ecol. 32, 3641–3656. Doi: https://doi.org/10.1111/mec.16960.
Dabney J., Meyer M., Pääbo S., 2013. Ancient DNA damage. Cold Spring Harb. perspect. biol. 5(7), a012567. Doi: https://doi.org/10.1101/cshperspect.a012567.
De Barba M., Baur M., Boyer F., Fumagalli L., Konec M. i współaut., 2023. Individual genotypes from environmental DNA: Fingerprinting snow tracks of three large carnivore species. Mol. Ecol. Resour. 5(7), a012567. Doi: https://doi.org/10.1111/1755-0998.13915.
Ficetola G. F., Taberlet, P., 2023. Towards exhaustive community ecology via DNA metabarcoding. Mol. Ecol. 32(23), 6320–6329. Doi: https://doi.org/10.1111/mec.16881.
Friedberg E. C., 2003. DNA damage and repair. Nature 421, 436–440.
Fulton T. L., Shapiro B., 2019. Setting Up an Ancient DNA Laboratory. [W:] Ancient DNA Methods and Protocols. Shapiro B., Barlow A., Heintzman P., Hofreiter M., Pajimans J., Soares A. E. (red.). Humana Press, New York, 1–14.
Garcés-Pastor S., Coissac E., Lavergne S., Schwörer C., Theurillat J.-P. i współaut., 2022. High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change. Nat. Commun. 13(1), 6559. Doi: https://doi.org/10.1038/s41467-022-34010-4.
Giosan L., Orsi W. D., Coolen M., Wuchter C., Dunlea A. G. i współaut., 2018. Neoglacial climate anomalies and the Harappan metamorphosis. Clim. Past 14, 1669–1686. Doi: https://doi.org/10.5194/cp-14-1669-2018.
Goslar T., 1995. Laminowane osady jeziorne jako źródło informacji o zmianach środowiska w przeszłości. Zeszyty Naukowe Politechniki Śląskiej 1293, 115–135.
Higuchi R., Bowman B., Freiberger M., Ryder O. A., Wilson A. C., 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284.
Hofreiter M., Jaenicke V., Serre D., Von Haeseler A., Pääbo S., 2001. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucl. Acids Res.29(23), 4793–4799. Doi: https://doi.org/10.1093/nar/29.23.4793.
Jia W., Liu X., Stoof-Leichsenring K. R., Liu S., Li K., Herzschuh U., 2022. Preservation of sedimentary plant DNA is related to lake water chemistry. Environ. DNA 4, 425–439. Doi: https://doi.org/10.1002/edn3.259.
Kanbar H. J., Olajos F., Englund G., Holmboe M., 2020. Geochemical identification of potential DNA-hotspots and DNA-infrared fingerprints in lake sediments. Appl. Geochem. 122, 104728. Doi: https://doi.org/10.1016/j.apgeochem.2020.104728.
Keck F., Blackman R. C., Bossart R., Brantschen J., Couton M. i współaut., 2022. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol. Ecol. 31, 1820–1835. Doi: https://doi.org/10.1111/mec.16364.
Khanna M., Stotzky G., 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58, 1930–1939.
Kjær K. H., Pedersen M. W., De Sanctis B., De Cahsan B., Korneliussen T. S. i współaut., 2022. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 612, 283–291. Doi: https://doi.org/10.1038/s41586-022-05453-y.
Kowalska Z., Pniewski F., Latała A., 2019. Barkoding dna – nowoczesne podejście do identyfikacji organizmów. Kosmos 68, 89–96. Doi: https://doi.org/10.36921/kos.2019_2493.
Lammers Y., Taberlet P., Coissac E., Elliott L. D., Merkel M. F., Pitelkova I., Alsos I. G., 2024. Multiplexing PCR allows the identification of within-species genetic diversity in ancient eDNA. Mol. Ecol. Resour. 24(3), e13926. Doi: https://doi.org/10.1111/1755-0998.13926.
Lammers Y., Heintzman P. D., Alsos I. G., 2021. Environmental palaeogenomic reconstruction of an Ice Age algal population. Commun. Biol. 4(1), 220. Doi: https://doi.org/10.1038/s42003-021-01710-4.
Lamperti L., Sanchez T., Si Moussi S., Mouillot D., Albouy C. i współaut., 2023. New deep learning-based methods for visualizing ecosystem properties using environmental DNA metabarcoding data. Mol. Ecol. Resour. 23(8), 1946–1958. Doi: https://doi.org/10.1111/1755-0998.13861.
Levy-Booth D. J., Campbell R. G., Gulden R. H., Hart M. M., Powell J. R i współaut., 2007. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39(12), 2977–2991. Doi: https://doi.org/10.1016/j.soilbio.2007.06.020.
McLachlan J. S., Clark J. S., Manos P. S., 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098. Doi: https://www.jstor.org/stable/3450919.
Meakin G., Jamieson A., 2013. DNA transfer: Review and implications for casework. Forensic Science International: Genetics 7, 434–443. Doi: https://doi.org/10.1016/j.fsigen.2013.03.013.
Murchie T. J., Long G. S., Lanoil B. D., Froese D., Poinar H. N., 2023. Permafrost microbial communities follow shifts in vegetation, soils, and megafauna extinctions in Late Pleistocene NW North America. Environ. DNA 5(6), 1759–1779. Doi: https://doi.org/10.1002/edn3.493.
Nakahama N., 2021. Museum specimens: An overlooked and valuable material for conservation genetics. Ecol. Res. 36, 13–23. Doi: https://doi.org/10.1111/1440-1703.12181.
Newton J. P., Bateman P. W., Heydenrych M. J., Kestel J. H., Dixon K. W. i współaut., 2023. Monitoring the birds and the bees: Environmental DNA metabarcoding of flowers detects plant–animal interactions. Environ. DNA 5, 488–502. Doi: https://doi.org/10.1002/edn3.399.
Nota K., Klaminder J., Milesi P., Bindler R., Nobile A. i współaut., 2022. Norway spruce postglacial recolonization of Fennoscandia. Nat. Commun. 13, 1333. Doi: https://doi.org/10.1038/s41467-022-28976-4.
Pääbo, S., 1985. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314, 644–645.
Pääbo, S., 1989. Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification. PNAS 86, 1939–1943.
Parducci L., Bennett K. D., Ficetola G. F., Alsos I. G., Suyama Y. i współaut., 2017. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942. Doi: https://doi.org/10.1111/nph.14470.
Pedersen M. W., Ruter A., Schweger C., Friebe H., Staff R. A. i współaut., 2016. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49. Doi: https://doi.org/10.1038/nature19085.
Schulte L., Meucci S., Stoof-Leichsenring K. R., Heitkam T., Schmidt N. i współaut., 2022. Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Commun. Biol. 5(1), 570. Doi: https://doi.org/10.1038/s42003-022-03455-0.
Schwörer C., Leunda M., Alvarez N., Gugerli F., Sperisen C., 2022. The untapped potential of macrofossils in ancient plant DNA research. New Phytol. 235, 391–401. Doi: https://doi.org/10.1111/nph.18108.
Shokralla S., Spall J. L., Gibson J. F., Hajibabaei M., 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805). Doi: https://doi.org/10.1111/j.1365-294X.2012.05538.x.
Sønstebø J. H., Gielly L., Brysting A. K., Elven R., Edwards M. i współaut., 2010. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10, 1009–1018. Doi: https://doi.org/10.1111/j.1755-0998.2010.02855.x.
Stoof-Leichsenring K. R., Epp L. S., Trauth M. H., 2012. Hidden diversity in diatoms of Kenyan Lake Naivasha : a genetic approach detects temporal variation. Mol. Ecol.21, 1918–1930. Doi: https://doi.org/10.1111/j.1365-294X.2011.05412.x.
Taberlet P., Coissac E., Hajibabaei M., Rieseberg L. H., 2012. Environmental DNA. Mol. Ecol. 21, 1789–1793. Doi: https://doi.org/10.1111/j.1365-294X.2012.05542.x.
Torti A., Lever M. A., Jørgensen B. B., 2015. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genomics 24, 185–196. Doi: https://doi.org/10.1016/j.margen.2015.08.007.
Valentini A., Taberlet P., Miaud C., Civade R., Herder J. i współaut., 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942. Doi: https://doi.org/10.1111/mec.13428.
van der Valk T., Pečnerová P., Díez-del-molino D., Bergström A., Oppenheimer J. i współaut., 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature. Doi: https://doi.org/10.1038/s41586-021-03224-9.
van Vugt L., Garcés-Pastor S., Gobet E., Brechbühl S., Knetge, A. i współaut., 2022. Pollen, macrofossils and sedaDNA reveal climate and land use impacts on Holocene mountain vegetation of the Lepontine Alps, Italy. Quat. Sci. Rev. 296, 107749. Doi: https://doi.org/10.1016/j.quascirev.2022.107749.
Verma M., Kulshrestha S., Puri A., 2017. Genome Sequencing. [W:] Bioinformatics. Methods in Molecular Biology Keith J. (red.), 3–33. Vol. 1525. Humana Press, New York. Doi: https://doi.org/10.1007/978-1-4939-6622-6_1.
Weiß C. L., Schuenemann V. J., Devos J., Shirsekar G., Reiter E. i współaut., 2016. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. R. Soc. Open Sci. 3(6), 160239. Doi: https://doi.org/10.1098/rsos.160239.
Williams J. W., Shuman B. N., Webb T., Bartlein P. J., Leduc, P. L., 2004. Late-Quaternary vegetation dynamics in north America: Scaling from taxa to biomes. Ecol. Monogr. 74, 309–334. Doi: https://doi.org/10.1890/02-4045.
Pobrania
Opublikowane
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 51
Liczba cytowań: 0
