Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

KOSMOS

Ziemniak kontra susza
  • Strona domowa
  • /
  • Ziemniak kontra susza
  1. Strona domowa /
  2. Archiwum /
  3. Tom 74 Nr 2 (346) (2025): Rośliny i ludzie – wspólna historia, wspólna przyszłość /
  4. Artykuły

Ziemniak kontra susza

Autor

  • Dominika Boguszewska-Mańkowska Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy w Radzikowie, Oddział w Jadwisinie, Zakład Agronomii Ziemniaka https://orcid.org/0000-0002-2815-7507

DOI:

https://doi.org/10.12775/KOSMOS.2025.012

Słowa kluczowe

ziemniak, susza, system korzeniowy, okresy krytyczne, genotyp

Abstrakt

W pracy przedstawiono problem tolerancyjności ziemniaka na suszę glebową. Omówiono zapotrzebowania wodne w różnych fazach rozwoju rośliny z uwzględnieniem okresów krytycznych. Zwrócono uwagę na zróżnicowanie odmianowe w reakcji na suszę i różnorodność strategii w utrzymaniu plony. Podkreślono rolę systemu korzeniowego w walce z suszą glebową. Nakreślono potrzebę dalszych badań fizjologicznych i biochemicznych w celu zrozumienia mechanizmów warunkujących tolerancyjność ziemniaka na suszę glebową.

Bibliografia

Ahmad, R., Kim M.D., Back, K.H., Kim, H.S., Lee H.S., i in., 2008. Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Reports 27: 687–698. https://doi.org/10.1007/s00299-007-0479-4

Aliche, E.B., Oortwijn, M., Theeuwen, T.P.J.M., Bachem, C.W.B., Visser, R.G.F., i in., 2018. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agriculture Water Management 206, 20–30. https://doi.org/10.1016/j.agw2018.04.013

Alvarez-Morezuelas, A., Barandalla, L., Ritter E., Lacuesta, M., Ruiz de Galarreta, J.I., 2022. Physiological response and yield components under greenhouse drought stress conditions in potato. Journal of Plant Physiology 278, 153790. https://doi.org/10.1016/j. jplph.2022.153790

Benesova, M., Hola, D., Fischer, L., Jedelsky, P.L., Hnilicka, F., i in., 2012. The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7, e38017. https://doi.org/10.1371/journal.pone.0038017

Blum, A., 2011. Drought resistance – is it really a complex trait? Functional Plant Biology 38(10), 753–757. https://doi.org/10.1071/fp11101

Boguszewska-Mańkowska, D., 2016. Odporność ziemniaka na suszę glebową i metody. Biuletyn IHAR 279, 65–75. https://doi.org/10.37317/biul-2016-0017

Boguszewska-Mańkowska, D., Pieczyński, M., Wyrzykowska, A., Kalaji, H.M., Sieczko, L., i in., 2018. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. Journal of Agronomy and Crop Science 204(1), 13–30. https://doi.org/10.1111/jac.12245

Boguszewska-Mańkowska, D., Zarzyńska, K., Nosalewicz, A., 2020. Drought Differentially Affects Root System Size and Architecture of Potato Cultivars with Differing Drought Tolerance. American Journal of Potato Research 97(1), 54–62. https://doi.org/10.1007/s12230-019-09755-2

Boguszewska-Mańkowska, D., Ruszczak, B., Zarzyńska, K., 2022. Classification of Potato Varieties Drought Stress Tolerance Using Supervised Learning. Applied Sciences (Switzerland) 12(4), 1939. https://doi.org/10.3390/app12041939

Çelik, S., 2024. Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars PeerJ Life & Environment https://doi.org/10.7717/peerj.17116

Dahal, K., Li X-Q., Tai H., Creelman A., Bizimungu B., 2019. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario – A Current Overview. Frontiers in Plant Science 10, 563. https://doi.org/10.3389/fpls.2019.00563

Fan, W., Zhang, M., Zhang, H., Zhang P., 2012. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase. PLoS ONE 7(5), 1–14. https://do.org/10.1371/journal.pone.0037344

Fenta, B.A., Driscoll, S.P., Kunert, K.J., Foyer, C.H., 2012. Characterization of DroughtTolerance Traits in Nodulated Soya Beans: The Importance of Maintaining Photosynthesis and Shoot Biomass Under DroughtInduced Limitations on Nitrogen Metabolism. Journal of Agronomy and Crop Science 198, 92–10. https://doi.org/10.1111/j.1439-037X.2011.00491.x

Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., i in., 2002 Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regulation 37, 263–285. https://doi.org/10.1023/A:1020835304842

George, T.S., Taylor, M.A., Dodd, I.C., i in., 2017. Climate Change and Consequences for Potato Production: a Review of Tolerance to Emerging Abiotic Stress. Potato Research 60, 239–268. https://doi.org/10.1007/s11540-018-9366-3

Głuska, A., 2004. Wpływ zmiennego rozkładu opadów na cechy bulw ziemniaka (Solanum tuberosum L) w warunkach polowych oraz wyznaczenie okresu krytycznego wrażliwości na niedobór wody u odmian o różnej długości okresu wegetacji. Zeszyty Probemowe Postępu Nauk Rolniczych; 496, 217–227.

Gururani, M. A., Upadhyaya, C.P., Strasser, R. J., Woong, Y. J., i in., 2012. Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiology and Biochemistry 58, 182–94. https://doi.org/10.1016/j.plaphy.2012.07.003

Hancock, R.D., Morris W.L., Ducreux L.J., Morris J.A., Usman, M., i in., 2014. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell and Environment 37, 439–450. https://doi.org/10.1111/pce.12168

Harris, P.M., 1978. Water. W: Harris P.M. (Ed.) The Potato Crop: The Scientific Basis for Improvement. Chapman i Hall. London, 244–277. Hemavathi, Upadhyaya, C.P., Aklua, N., Kim H.S., i in., 2011. Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonic acid reductase gene in response to various abiotic stresses. Molecular Breeding 28, 105–115. https://doi.org/10.1007/s11032-010-9465-6

Hill, D., Nelson, D., Hammond, J., Bell, L., 2021. Morphophysiology of Potato (Solanum tuberosum) in Response to Drought Stress: Paving the Way Forward. Frontiers in Plant Science 11, 597554. https://.org/10.3389/fpls.2020.597554

Iwama, K., 2008. Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research 5, 333–353 https://doi.org/10.1007/S11540- 008-9120-3

Kooyers, N.J. 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012

Monneveux, P., Ramirez, D.A., Pino, M., 2013. Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals? Plant Science 205–206: 76–86. https://doi.org/10.1016/j.plantsci.2013.01.011

Nasir, M.W., Toth, Z., 2022. Effect of Drought Stress on Potato Production: A Review. Agronomy 12, 635. https://doi.org/10.3390/agronomy12030635

Nowacki, W., 2016. Racjonalne gospodarowanie zasobami wodnymi w uprawie ziemniaka. [W:] Innowacyjne metody gospodarowania zasobami wody w rolnictwie (red.) CDR Brwinów, 273–286. ISBN: 978-83-88082-18-4

Nowacki, W. 2018. Water in potato production, problems and challenges. Ecological Engineering and Environmental Technology, 19(6), 14–25. https://doi.org/10.12912/23920629/95273

Obidiegwu, J.E., Bryan, G.J., Jones H.G., Prashar, A., 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science 6, 542. https://doi.org/10.3389/fpls.2015.00542

Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, i in., 2013. Down-regulation of CBP80 gene expression asa strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal 11, 459–469. https://doi.org/10.1111/pbi.12032

Pieczynski, M., Wyrzykowska, A., Milanowska, K., Boguszewska-Mankowska, D., Zagdanska, B., i in., (2018) Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with Arabidopsis plants. Plant Biotechnology Journal, https://doi.org/10.1111/pbi.12800

Pino, M.T., Avila, A., Molina, A., Jeknic, Z., Chen, T.H.H., 2013. Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene. Ciencia e Investigación Agraria 40, 171–184. https://10.4067/S0718-16202013000100015

Schafleitner, R., Rosales R.O.G., Gaudin, A., Aliaga, C.A.A., Martinez G.N., i in., 2007. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry 45: 673–690. https://doi.org/10.1016/j.plaphy.2007.06.003

Scott, G.J., Rosegrant, M.W., Ringler, C., 2000. Global projections for root and tuber crops to the year 2020. Food Policy 25, 561–597. https://doi.org/10.1016/S0306-9192(99)00087-1

Sprenger, H., Kurowsky, C., Horn, R., Erban, A., Seddig, S., i in., 2016. The drought response of potato reference cultivars with contrasting tolerance. Plant, Cell and Environment 39: 2370–2389. https://doi.org/10.1111/pce.12780

Stark, J.C., Love, S.L., King, B.A., Marshall, J.M., Bohl, W.H., i in., 2013. Potato cultivar response to seasonal drought patterns. American Journal of Potato Research 90, 207–216. https://doi.org/10.1007/s12230- 012-9285-9

Takahashi, F., Kuromori, T., Sato, H., Shinozaki, K., 2018. Regulatory gene networks in drought stress responses and resistance in plants. Advances in Experimental Medicine and Biology 1081, 189–214. https://doi.org/10.1007/978-981-13-1244-1_11

Trawczyński, C., 2020. Wpływ biostymulatorów na plon i jakość bulw ziemniaka upra-wianego w warunkach suszy i wysokiej temperatury. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 289: 11–19. https://doi.org/10.37317/biul-2020-0017

Watanabe, K.N., Kikuchi, A., Shimazaki, T., Asahina, M., 2011. Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Research 54, 319–324. https://doi.org/10.1007/s11540-011-9198-x

Wishart, J., George T.S.L., K. Brown, P.J. White, G. Ramsay, H., i in., 2014. Filed phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant and Soil 378: 531–363. http://dx.doi.org/10.1007/s11104-014-2029-5

Zinta, R., Tiwari, J.K., Buckseth, T., Thakur, K., Goutam, U., i in., 2022. Root system architecture for abiotic stress tolerance in potato: Lessons from plants. Frontiers in Plant Science 13, 926214. https://doi.org/10.3389/fpls.2022.926214

Zarzynska, K., Boguszewska-Mańkowska, D., Nosalewicz, A., 2017. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant, Soil and Environment 63, 159–164. https://doi.org/10.17221/4/2017-PSE

Zgórska, K., Grudzińska, M., 2012. Zmiany Wybranych cech jakości ziemniaka w czasie przechowywania. Acta Agrophysica 19(1), 203–214.

Zhao, J., Yao, B., Peng, Z., Yang X., Li, K., i in., 2025. Splicing defect of StDRO2 intron 1 promotes potato root growth by disturbing auxin transport to adapt to drought stress. Horticultural Plant Journal 11, 706–720. https://doi.org/10.1016/j.hpj.2023.11.003

KOSMOS

Pobrania

  • PDF

Opublikowane

2025-06-30

Numer

Tom 74 Nr 2 (346) (2025): Rośliny i ludzie – wspólna historia, wspólna przyszłość

Dział

Artykuły

Licencja

Prawa autorskie (c) 2026 KOSMOS

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 22
Liczba cytowań: 0

W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa