Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Dynamic Econometric Models

Discrete Spectral Analysis. The Case of Industrial Production in Selected European Countries
  • Home
  • /
  • Discrete Spectral Analysis. The Case of Industrial Production in Selected European Countries
  1. Home /
  2. Archives /
  3. Vol. 15 (2015) /
  4. Articles

Discrete Spectral Analysis. The Case of Industrial Production in Selected European Countries

Authors

  • Łukasz Lenart Cracow University of Economics

DOI:

https://doi.org/10.12775/DEM.2015.002

Keywords

discrete spectral analysis, almost periodic function, frequency identification, graphical test

Abstract

The aim of this paper is to show the usefulness the discrete spectral analysis in identification cyclical fluctuations. The subsampling procedure was applied to construct the asymptotically consistent test for Fourier coefficient and frequency significance. The case of monthly production in industry in European countries (thirty countries) was considered. Using proposed approach the frequencies concerning business fluctuations, seasonal fluctuations and trading-day effects fluctuations were recognized in considered data sets. The comparison with existing procedures was shown.

References

Croux, Ch., Forni, M. and Reichlin, L. (2001), A measure of covomement for economic variables: theory and empirics. The Review of Ecomonics and Statistics, 83(2):232–241, DOI: http://dx.doi.org/10.1162/00346530151143770.

Doukhan, P., (1994), Mixing: Properties and Examples. Springer-Verlag, New York,

Ftiti, Z., (2010), The macroeconomic performance of the inflation targeting policy: An approach based on the evolutionary co–spectral analysis (extension for the case of a multivariate process). Economic Modelling, 27:468–476,

Guyon, X., (1995), Random Fields on a Network. Springer-Verlag, New York.

Hamilton J.D., (1994), Time Series Analysis. Princeton University Press, New Jersey.

Hurd, H. and Gerr L., (1991), Graphical methods for determining the presence of periodic correlation. J. Time Ser. Anal., 12(4):337–350. DOI: http://dx.doi.org/10.1111/j.1467-9892.1991.tb00088.x.

Ladiray, D., (2012), Theoretical and real trading-day frequencies, in Bell W.R., Holan S.H. and McErloy T.S. (ed.), Economic time Series: Modeling and Seasonality, pages 255–279. DOI: http://dx.doi.org/10.1201/b11823-16.

Lenart Ł, Pipień M., (2013a), Almost periodically correlated time series in business fluctuations analysis. Acta Physica Polonica A, 123(3):567–583. DOI: http://dx.doi.org/10.12693/APhysPolA.123.567.

Lenart Ł, Pipień M., (2013b), Seasonality revisited - statistical testing for almost periodically correlated processes. Central European Journal of Economic modelling and Econo-metrics, 5:85–102.

Lenart Ł, Pipień M., (2015), Testing the common length of the business cycles with discrete spectral analysis and subsampling approach. Submited to Journal of Time Series Analysis.

Lenart Ł., (2011), Asymptotic distributions and subsampling in spectral analysis for almost periodically correlated time series. Bernoulli, 17(1):290–319. DOI: http://dx.doi.org/10.3150/10-BEJ269.

Lenart Ł., (2013), Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series. Journal of Multivariate Analysis, 115:252–269. DOI: http://dx.doi.org/10.1016/j.jmva.2012.10.006.

Li T.H. and Song K.S.., (2002), Asymptotic analysis of a fast algorithm for efficient multiple frequency estimation IEEE Transactions on Information Theory, 48(10):2709 – 2720

McAdam P. and Mestre R.., (2008), Evaluating macro–economic models in the frequency domain: A note. Economic Modelling, 25:1137–1143.

Metz R., (2009), Comment on ”Stock markets and business cycle comovement in Germany before world war I: Evidence from spectral analysis”. Journal of Macroeconomics, 31:58–67, DOI: http://dx.doi.org/10.1016/j.jmacro.2008.01.004.

Orlov A.G., (2006), Capital controls and stock market volatility in frequency domain. Eco-nomics Letters, 91:222–228, DOI: http://dx.doi.org/10.1016/j.econlet.2005.09.014.

Orlov A.G., (2009), A cospectral analysis of exchange rate comovements during Asian finan-cial crisis. Journal of International Financial Markets, Institutions and Money, 19:742–758, DOI: http://dx.doi.org/10.1016/j.intfin.2008.12.004.

Pakko M.R., (2004), A spectral analysis of the cross–country consumption correlation puzzle. Economics Letters, 84:341–347.

Priestley M.B.,., (1981), Spectral Analysis and Time Series. Academic Press, London, DOI: http://dx.doi.org/10.2307/2983035.

Uebele M. and Ritschl.A., (2009), Stock markets and business cycle comovement in Germany before World War I: Evidence from spectral analysis. Journal of Macroeconomics, 31:35–57.

Dynamic Econometric Models

Downloads

  • PDF

Published

2015-12-28

How to Cite

1.
LENART, Łukasz. Discrete Spectral Analysis. The Case of Industrial Production in Selected European Countries. Dynamic Econometric Models [online]. 28 December 2015, T. 15, s. 27−47. [accessed 27.1.2023]. DOI 10.12775/DEM.2015.002.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 15 (2015)

Section

Articles

License

The journal provides an Open Access to its content based on the non-exclusive licence Creative Commons (CC BY-ND 4.0).

To enable the publisher to disseminate the author's work to the fullest extent, the author must agrees to the terms and conditions of the License Agreement with Nicolaus Copernicus University.

Stats

Number of views and downloads: 125
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Authors

Newsletter

Newsletter
Unsubscribe

Tags

Search using one of provided tags:

discrete spectral analysis, almost periodic function, frequency identification, graphical test
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Karpacka Uczelnia Państwowa w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop