Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Dynamic Econometric Models

The Haar Wavelet Transfer Function Model and Its Applications
  • Home
  • /
  • The Haar Wavelet Transfer Function Model and Its Applications
  1. Home /
  2. Archives /
  3. Vol. 11 (2011) /
  4. Articles

The Haar Wavelet Transfer Function Model and Its Applications

Authors

  • Joanna Bruzda Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/DEM.2011.010

Keywords

wavelet transfer function model, Haar wavelet, maximal overlap discrete wavelet transform

Abstract

In the paper the Haar wavelet transfer function models are suggested as a way to
parsimoniously parametrise the impulse responses and construct models with parameters providing
an insight into the frequency content of the relationships under scrutiny. Besides, the models enable to verify hypotheses concerning changes of the regression parameters across dyadic scales (octave frequency bands). In the paper some theoretical properties of the models are investigated and an empirical illustration is provided. In the empirical study returns on WIG are modelled with the help of returns on S&P 500. Interestingly, besides the insight into the frequency content of the relationship, the empirical wavelet transfer function models also provided good forecasts.

References

Ashley, R., Verbrugge, R. J. (2008), Frequency Dependence in Regression Model Coefficients: An Alternative Approach for Modeling Nonlinear Dynamic Relationships in Time Series, Econometric Reviews, 28, 4–20.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (2008), Time Series Analysis. Forecasting and Control, 4th edition, Wiley, New Jersey.

Bruzda, J. (2011), Wavelet Analysis of Economic Processes, monograph in preparation. Hunt, K., Nason, G. P. (2001), Wind Speed Modelling and Short-Term Prediction Using Wavelets, Wind Engineering, 25, 55–61.

Hunt, K. (2002), Wavelet Methods for Transfer Function Modelling, PhD thesis, University of Bristol.

Michis, A. A. (2006), Increasing Marketing Accuracy. Wavelet Based Forecasting Techniques, ESOMAR Congress 2006 Research Paper.

Nason, G. P., Sapatinas, T. (2002), Wavelet Packet Transfer Function Modelling of Nonstationary Time Series, Statistics and Computing, 12, 45–56.

Nason, G. P., Sapatinas, T., Sawczenko, A. (2001), Wavelet Packet Modeling of Infant Sleep State Using Heart Rate Data, Sankhyā B, 63, 199–217.

Percival, D. B., Walden, A. T. (2000), Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge.

Stawicki, J. (1993), Metody filtracji w modelowaniu procesów ekonomicznych, (Filtration Methods in Modelling Economic Processes), Wydawnictwo UMK, Toruń.

Dynamic Econometric Models

Downloads

  • PDF

Published

2011-12-10

How to Cite

1.
BRUZDA, Joanna. The Haar Wavelet Transfer Function Model and Its Applications. Dynamic Econometric Models. Online. 10 December 2011. Vol. 11, pp. 141-154. [Accessed 16 May 2025]. DOI 10.12775/DEM.2011.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 11 (2011)

Section

Articles

License

The journal provides an Open Access to its content based on the non-exclusive licence Creative Commons (CC BY-ND 4.0).

To enable the publisher to disseminate the author's work to the fullest extent, the author must agrees to the terms and conditions of the License Agreement with Nicolaus Copernicus University.

Stats

Number of views and downloads: 579
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Authors

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

wavelet transfer function model, Haar wavelet, maximal overlap discrete wavelet transform
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop