Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Dynamic Econometric Models

Unobserved Component Model for Forecasting Polish Inflation
  • Home
  • /
  • Unobserved Component Model for Forecasting Polish Inflation
  1. Home /
  2. Archives /
  3. Vol. 10 (2010) /
  4. Articles

Unobserved Component Model for Forecasting Polish Inflation

Authors

  • Jacek Kwiatkowski Nicholas Copernicus University in Toruń

DOI:

https://doi.org/10.12775/DEM.2010.010

Keywords

local level model, inflation, conditional heteroscedasticity

Abstract

This paper aims to use the local level models with GARCH and SV errors to predict Polish inflation. The series to be forecast, measured monthly, is consumer price index (CPI) in Poland during 1992-2008. We selected three forecasting models i.e. LL-GARCH(1,1) with Normal or Student errors and LL-SV. A simple AR(2)-SV model is used as a benchmark to assess the accuracy of prediction. The presented results indicate, that there is no clear advantage of LL models in forecasting Polish inflation over standard AR(2)-SV model, although all the models give satisfactory results.

References

Bos, C. (2001), Time Varying Parameter Models for Inflation and Exchange Rates, WebDOC.

Diebold, F.X., Mariano, R.S. (1995), Comparing Predictive Accuracy, Journal of Business and Economic Statistics, 13, 253–63. DOI: http://dx.doi.org/10.2307/1392185

Durbin, J., Koopman, S.J. (2001), Time Series Analysis by State Space Methods, Oxford University Press, Oxford. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199641178.001.0001

Fallenbuchl, Z.M. (1994), Foreign Trade in the Process of Transformation in Poland, Atlantic Economic Journal, 22, 2, 51–60. DOI: http://dx.doi.org/10.1007/BF02310194

Grassi, S., Proietti, T. (2008), Has the Volatility of U.S. Inflation Changed and How?, MPRA Paper 11453.

Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.

Koop, G. (2003), Bayesian Econometrics, John Wiley & Sons.

Koop, G., Potter, S. (2001), Are Apparent Findings of Nonlinearity Due to Structural Instability in Economic Time Series?, The Econometrics Journal, 4, 1, 37–55.

Muth, J.F. (1960), Optimal Properties of Exponentially Weighted Forecasts, Journal of the American Statistical Association, 55, 299–306. DOI: http://dx.doi.org/10.2307/2281742

Pellegrini, S., Ruiz, E., Espasa, A. (2007), The Relationship Between ARIMA-GARCH and Unobserved Component Models with GARCH Disturbances, Working Paper, ws072706.

Pellegrini, S., Ruiz, E., Espasa, A. (2008), ARIMA-GARCH and Unobserved Component Models with GARCH Disturbances: Are their Prediction Intervals Different? Job Market Paper.

Stock, J.H., Watson, M.W. (2007), Why has U.S. Inflation Become Harder to Forecast? Journal of Money, Credit, and Banking, 39, 3–33. DOI: http://dx.doi.org/10.1111/j.1538-4616.2007.00090.x

Stock, J.H., Watson, M.W. (2008), Phillips Curve Inflation Forecasts, Working Paper, 14322.

West, M., Harrison, J. (1989), Bayesian Forecasting and Dynamic Models, Springer. DOI: http://dx.doi.org/10.1007/978-1-4757-9365-9

Dynamic Econometric Models

Downloads

  • PDF

Published

2010-07-17

How to Cite

1.
KWIATKOWSKI, Jacek. Unobserved Component Model for Forecasting Polish Inflation. Dynamic Econometric Models. Online. 17 July 2010. Vol. 10, pp. 121-129. [Accessed 5 July 2025]. DOI 10.12775/DEM.2010.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 10 (2010)

Section

Articles

License

The journal provides an Open Access to its content based on the non-exclusive licence Creative Commons (CC BY-ND 4.0).

To enable the publisher to disseminate the author's work to the fullest extent, the author must agrees to the terms and conditions of the License Agreement with Nicolaus Copernicus University.

Stats

Number of views and downloads: 478
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Authors

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

local level model, inflation, conditional heteroscedasticity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop