Modeling the Dependence Structure of the WIG20 Portfolio Using a Pair-copula Construction
DOI:
https://doi.org/10.12775/DEM.2010.003Keywords
dependence, portfolio, copula, pair-copula constructionAbstract
Elliptical distributions commonly applied to modeling the returns of stocks in highdimensional portfolio are not capable of adequate describing the dependence between the components when their statistical properties are very diverse. The MGARCH and standard dynamic copula models are often of little usefulness in such cases. In this paper, we apply a methodology called the pair-copula decomposition to model the joint conditional distribution of the returns on stocks constituting the WIG20 index, and show some advantage of this construction over the approach using the t Student DCC model.
References
Aas, K., Czado, C., Frigessi, A., Bakken, H. (2009), Pair-Copula Constructions of Multiple Dependence, Insurance: Mathematics and Finance, 44, 182–198. DOI: http://dx.doi.org/10.1016/j.insmatheco.2007.02.001
Bauwens, E. Laurent, S. Rombouts, J.V.K. (2006), Multivariate GARCH Models: A Survey, Journal of Applied Econometrics, 21, 79–109. DOI: http://dx.doi.org/10.1002/jae.842
Bedford, T., Cooke, R.M. (2001), Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines, Annals of Mathematics and Artificial Intelligence, 32, 245–268.
Bedford, T., Cooke, R.M. (2002), Vines – a New Graphical Model for Dependent Random Variables, Annals of Statistics, 30, 1031–1068. DOI: http://dx.doi.org/10.1214/aos/1031689016
Christoffersen, P. F. (1998), Evaluating Interval Forecasts, International Economic Review, 39, 841–862. DOI: http://dx.doi.org/10.2307/2527341
Engle, R. F., (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics, 20, 339–350. DOI: http://dx.doi.org/10.1198/073500102288618487
Genest, C. Ghoudi K. Rivest, L.-P. (1995), A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions, Biometrika, 82, 543–552.
Giot, P., Laurent, S. (2003), Value-at-Risk for Long and Short Trading Positions, Journal of Applied Econometrics, 18, 641–664. DOI: http://dx.doi.org/10.1002/jae.710
Joe, H. (1996), Families of m-variate Distributions with Given Margins and m(m - 1)/2 Bivariate Dependence Parameters. In: Rüschendorf, L., Schweizer, B.,Taylor, M.D. (Eds.), Distributions with Fixed Marginals and Related Topics, IMS Lecture Notes Monograph Series 28, Institute of Mathematical Statistics, Hayward, CA, 120–141.
Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman & Hall, London.
Kurowicka, D., Cooke, R. M., (2006), Uncertainty Analysis with High Dimensional Dependence Modelling, Wiley, New York. DOI: http://dx.doi.org/10.1002/0470863072
Lambert, P., Laurent, S. (2001), Modelling Financial Time Series Using GARCH-type Models with a Skewed Student Distribution for the Innovations, Institut de Statistique, Université Catholique de Louvain, Discussion Paper 0125.
Nelsen, R. B. (2006) An Introduction to Copulas (2nd ed.), Springer, New York. DOI: http://dx.doi.org/10.1007/978-1-4757-3076-0
Sklar, A. (1959), Fonctions de rérpartition à n dimensions et leurs marges, Publications de l’Institut Statistique de l’Université de Paris, 8, 229–231.
Downloads
Published
How to Cite
Issue
Section
License
The journal provides an Open Access to its content based on the non-exclusive licence Creative Commons (CC BY-ND 4.0).
To enable the publisher to disseminate the author's work to the fullest extent, the author must agrees to the terms and conditions of the License Agreement with Nicolaus Copernicus University.
Stats
Number of views and downloads: 436
Number of citations: 0