Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Dynamic Econometric Models

Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market
  • Home
  • /
  • Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market
  1. Home /
  2. Archives /
  3. Vol. 11 (2011) /
  4. Articles

Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market

Authors

  • Paweł Kliber Poznan University of Economics

DOI:

https://doi.org/10.12775/DEM.2011.012

Keywords

Blumenthal-Getoor index, singularity spectrum, Lévy exponential models

Abstract

In the paper we try to measure the activity of jumps in returns of some instruments from the Polish financial market. We use Blumenthal-Getoor index β for Lévy processes as a measure of jumps’ activity. This allows us to distinguish between processes with rare and sharp
jumps and the processes with infinitely-active jump component. We use three different methods. First we use activity signature plots to estimate the activity patterns of jumps. Then we estimate the Blumenthal-Getoor index with Aït-Sahalia and Jacod threshold estimator.Then we use methods based on singularity spectra of Lévy processes. Finally, we compare the results.

 

References

Aït-Sahalia, Y., Jacod, J. (2009), Estimating The Degree of Activity of Jumps in High Frequency Data, The Annals of Statistics 37, 2202–2244.

Barndorff-Nielsen, O.E., Shephard, N. (2002), Power Variation and Time Change, working paper, available in RePEc database.

Becry, E., Muzy, J. F., Arnédo, A. (1993), Singularity Spectrum of Fractal Signals from Wavelet Analysis: Exact Results, Journal of Statistical Physics 70, 635–674.

Black, F., Scholes, M. (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637–654.

Cont, R. (2001), Empirical Properties of Assets Returns: Stylized Facts and Statistical Issues, Qualitative Finance 1, 223–236.

Cont, R., Tankov, P. (2004), Financial Modelling with Jump Processes, Chapman&Hall, London, New York.

Falconer, K. (2003) Fractal Geometry, Wiley.

Feller, W. (1971), An Introduction to Probability Theory and Its Applications, vol. 2, Wiley.

Frisch, U., Parsi, G. (1985) Fully Developed Turbulence and Intermittency, in: Giil, M. (ed.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North Holland, Amsterdam, 84–88.

Jaffard, S. (1997a), Multifractal Formalism for Functions Part I: Results Valid for All Functions,

SIAM Journal of Mathematical Analysis 28, 944–970.

Jaffard, S. (1997b), Multifractal Formalism for Functions Part II: Self-Similar Functions, SIAM Journal of Mathematical Analysis 28, 971–998.

Jaffard, S. (1999), The Multifractal Nature of Lévy Processes, Probability Theory and Related Fields 114, 207–227

Jondeau, E., Poon, S.-H., Rockinger, M. (2007), Financial Modeling Under Non-Gaussian Distributions, Springer.

Kallsen, J. (2000), Optimal Portfolios for Exponential Lévy Processes, Mathematical Methods of Operational Research 51, 357–374.

Maldenbrot, B. B. (1963) The Variation of Certain Speculative Prices, Journal of Business 36, 394–419.

Malevergne, Y., Sornette, D. (2006), Extreme Financial Risks, Springer, Berlin, New York.

Mallat, S. (2003), A Wavelet Tour of Signal Processing, Elsevier, Singapore.

Markowitz, H.M (1952) Portfolio Selection, Journal of Finance 7, 77–91.

Merton, R. C. (1973) Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141–183.

Oświęcimek, P. (2005), Multifraktalne charakterystyki finansowych szeregów czasowych (Multifractal Characteristics of Financial Time Series), doctor thesis, Instytut Fizyki Jądrowej Polskiej Akademii Nauk (Nuclear Physics Institute of The Polish Academy of Science).

Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton. Sharpe, W. F. (1963), A Simplified Model for Portfolio Analysis, Management Science 9, 277–293.

Todorov, V., Tauchen, G. (2009), Activity Signature Function for High-Frequency Data Analysis, Journal of Econometrics, preprint at http://ideas.repec.org (7.09.2011).

Turiel, A., Pérez-Vincente, C., Grazzini, J. (2006), Numerical Methods for The Estimation of Multifractal Singularity Spectra on Sampled Data: A Comparative Study, Journal of Computational Physics 216, 362–390.

Zhang, L., Mykland, P. A., Aït-Sahalia Y. (2005), A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data, Journal of the American Statistical Association 100, 1394–1411.

Zhang, L. (2007), What You Don’t Know Cannot Hurt You: On the Detection of Small Jumps, working paper at http://tigger.uic.edu/~lanzhang/ (7.09.2011).

Dynamic Econometric Models

Downloads

  • PDF

Published

2011-12-10

How to Cite

1.
KLIBER, Paweł. Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market. Dynamic Econometric Models. Online. 10 December 2011. Vol. 11, pp. 171-184. [Accessed 29 June 2025]. DOI 10.12775/DEM.2011.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 11 (2011)

Section

Articles

License

The journal provides an Open Access to its content based on the non-exclusive licence Creative Commons (CC BY-ND 4.0).

To enable the publisher to disseminate the author's work to the fullest extent, the author must agrees to the terms and conditions of the License Agreement with Nicolaus Copernicus University.

Stats

Number of views and downloads: 483
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Authors

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Blumenthal-Getoor index, singularity spectrum, Lévy exponential models
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop