Topological Methods in Nonlinear Analysis Volume 57, No. 2, 2021, 427–439 DOI: 10.12775/TMNA.2020.041

O2021 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

POSITIVE SOLUTIONS FOR SCHRÖDINGER–POISSON–SLATER SYSTEM WITH COERCIVE POTENTIAL

Yongsheng Jiang — Zhengping Wang — Huan-Song Zhou

ABSTRACT. We study the following Schrödinger–Poisson–Slater type system:

(0.1)
$$\begin{cases} -\Delta u + V(x)u + \lambda\phi(x)u = |u|^{p-1}u, & x \in \mathbb{R}^3, \\ -\Delta\phi = u^2, & \lim_{|x| \to +\infty} \phi(x) = 0, \end{cases}$$

where $\lambda > 0$ is a parameter, $p \in (1, 2)$, $V \in C(\mathbb{R}^N, \mathbb{R}^+_0)$. If V is a constant, or $p \in (2, 5)$ with $V \in L^{\infty}(\mathbb{R}^3)$, the above system has been considered in many papers. In this paper, we are interested in the case: $p \in (1, 2)$ and V being a coercive potential, i.e., $\lim_{|x|\to+\infty} V(x) = \infty$. We prove that there

exists $\lambda_0 > 0$ such that system (0.1) has at least two positive solutions u_λ^0 and u_λ^1 for any $\lambda \in (0, \lambda_0)$. Moreover, u_λ^0 is a ground state (i.e., the least energy solution) which must blow up as $\lambda \to 0$. Particularly, when $p \in (11/7, 2)$ and $\lambda > 0$ is small enough, we show that the ground state of (0.1) must be non-radially symmetric even if V(x) = V(|x|), such as $V(x) = |x|^2$.

²⁰²⁰ Mathematics Subject Classification. Primary: 35J20; Secondary: 35J60.

 $Key\ words\ and\ phrases.$ Schrödinger–Poisson–Slater system; coercive potential; ground state.

This study was funded by NSFC (grant numbers: 11871386, 11871387 and 11931012) and Natural Science Foundation of Hubei Province (No. 2019CFB570) as well as the Fundamental Research Funds for the Central Universities (WUT: 2020IB017).