Topological Methods in Nonlinear Analysis Volume 57, No. 1, 2021, 297–315 DOI: 10.12775/TMNA.2020.017

© 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

INFINITELY MANY PERIODIC SOLUTIONS OF DUFFING EQUATIONS UNDER INTEGRAL CONDITION

NANNAN ZHENG — ZAIHONG WANG

ABSTRACT. In this paper, we study the multiplicity of periodic solutions of a Duffing equation

x'' + g(x) = p(t).

By using the generalized Poincaré–Birkhoff fixed point theroem, we prove that this equation has infinitely many periodic solutions provided g satisfies a kind of integral condition and the related time map satisfies oscillating condition.

1. Introduction

We are concerned with the multiplicity of periodic solutions of the Duffing equation of the form

(1.1)
$$x'' + g(x) = p(t),$$

where $g: \mathbb{R} \to \mathbb{R}$ is locally Lipschitz continuous, $p: \mathbb{R} \to \mathbb{R}$ is continuous and periodic with the least period equal to 2π .

The existence and multiplicity of periodic solutions of equation (1.1) has been widely studied in literature because of its significant applications in theory and

²⁰²⁰ Mathematics Subject Classification. Primary: 34C25; Secondary: 34C15.

 $Key\ words\ and\ phrases.$ Duffing equation; periodic solution; Poincaré–Birkhoff fixed point theorem.