Semiflow selection and Markov selection theorems

Jorge E. Cardona, Lev Kapitanski


The deterministic analog of the Markov property of a time-homogeneous Markov process is the semigroup property of solutions of an autonomous differential equation. The semigroup property arises naturally when the solutions of a differential equation are unique, and leads to a semiflow. We prove an abstract result on the measurable selection of a semiflow for the situations without uniqueness. We outline applications to ODEs, PDEs, differential inclusions, etc. Our proof of the semiflow selection theorem is motivated by N.V. Krylov's Markov selection theorem. To accentuate this connection, we include a new version of the Markov selection theorem related to more recent papers of Flandoli and Romito and Goldys et al.


Measurable selection theorems; semiflows; Markov property; Markov selection theorem

Full Text:



Ch.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, Springer–Verlag, 3rd edition (June 30, 2006).

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1191–1244.

N. Aronszajn, Le correspondant topologique de l’Unicité dans la théorie des équations différentielles, Ann. Math. 43 (1942), no. 4, 730–738.

A. Beck, On Invariant Sets. Annals of Mathematics, vol. 67 (1958), no. 1, 99–103.

D. Basarić, Semiflow selection for the compressible Navier–Stokes system, arXiv preprint arXiv:1908.11695.

D. Blount and M.A. Kouritzin, On convergence determining and separating classes of functions, Stochastic Process. Appl. 120 (2010), 1898–1907.

J.E. Cardona, On Statistical Solutions of Evolution Equations, Ph.D. Thesis, University of Miami, 2017, 103 pp.

Ch. Castaing, Sur les multi-applications mesurables, Rev. Françoise Informat. Recherche Opérationnelle 1 (1967), 91–126.

K. Deimling, Multivalued Differential Equations, Walter de Gruyter, 1992.

S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions De Gruyter Series in Nonlinear Analysis and Applications, vol. 18, Walter de Gruyter, Berlin/Boston, 2013.

L.E. Dubins and L.J. Savage, How to Gamble if You Must, McGraw–Hill, New York, 1965.

N. Dunford and J.T. Schwartz, Linear Operators, Part 1. General Theory, vol. 1, Wiley–Interscience, 1988.

A.F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic Publishers Group, 1988.

F. Flandoli and J.A. Langa, Markov attractors: a probabilistic approach to multivalued flows, Stoch. Dyn. 8 (2008), no. 1, 59–75.

F. Flandoli and N. Romito, Markov selections for the 3D stochastic Navier–Stokes equations, Probab. Theory Related Fields 140 (2008), 407–458.

M. Fukuhara, Sur les systèmes des équations différentielles ordinaires, Jap. J. Math. 5 (1928), 345–350.

B. Goldys, M. Röckner and X. Zhang, Martingale solutions and Markov selections for stochastic partial differential equations, Stochastic Processes and their Applications, Vol. 119, Issue 5, May 2009, pp. 1725–1764.

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics (Book 38), Society for Industrial and Applied Mathematics, 2nd edition, 2002.

R.E. Heisey, Partition of unity and a closed embedding theorem for (C p , b∗ )-maifolds, Trans. Amer. Math. Soc. 206 (1975), 281–294.

Hopf, Eberhard, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr. 4.1–6 (1950), 213–231.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I. Theory, Mathematics and Its Applications, Vol. 149, Kluwer Academic Publishers, 1997.

A.D. Ioffe, Survey of measurable selection theorems: Russian literature supplement, SIAM J. Control Opt. 16 (1978), no. 5, 728–732.

L. Kapitanski and S. Živanović Gonzalez, Attractors in hyperspace, Topol. Methods Nonlinear Anal. 44 (2014), no. 1, 199–227.

S. Karimghasemi, S. Müller and M. Westdickenberg, Flow Solutions of Transport Equations, arXiv:1912.06815.

A. Klenke, Probability Theory: A Comprehensive Course (Universitext), 2nd ed., Springer Science & Business Media, 2014.

H. Kneser, Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt, S.B. Preuss. Akad. 4 (1923), 171–174.

N.V. Krylov, The regularity of conditional probabilities for stochastic processes, Theory Probab. Appl. 18 (1973), no. 1, 150–153.

N.V. Krylov, On the selection of a Markov process from a system of processes and the construction of quasi-diffusion processes, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), no. 3, 691–708.

K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Pol. Sc. 13 (1965), 397–403.

O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd English Edition, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York, London, Paris 1969.

O.A. Ladyzhenskaya and A.M. Vershik, Sur l’évolution des mesures détérminées par les équations de Navier–Stokes et la résolution du problème de Cauchy pour l’équation statistique de E. Hopf, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 209–230.

J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248.

T. Parthasarathy, Selection Theorems and their Applications, Lecture Notes in Mathematics (Book 263), Springer, 1972.

G.R. Sell, Differential equations without uniqueness and classical topological dynamics, J. Differential Equations 14 (1973), 42–56.

N. E. Steenrod, A convenient category of topological spaces. Michigan Math. J. 14 1967 133–152.

V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423–439.

D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer–Verlag, Berlin, 1979.

D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization, 15 (1977), no. 5, 859–903.


  • There are currently no refbacks.

Partnerzy platformy czasopism