Topological Methods in Nonlinear Analysis Volume 55, No. 1, 2020, 169–184 DOI: 10.12775/TMNA.2019.093

© 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

GLOBAL CONTINUATION IN EUCLIDEAN SPACES OF THE PERTURBED UNIT EIGENVECTORS CORRESPONDING TO A SIMPLE EIGENVALUE

Pierluigi Benevieri — Alessandro Calamai Massimo Furi — Maria Patrizia Pera

ABSTRACT. In the Euclidean space \mathbb{R}^k , we consider the perturbed eigenvalue problem $Lx + \varepsilon N(x) = \lambda x$, ||x|| = 1, where ε , λ are real parameters, L is a linear endomorphism of \mathbb{R}^k , and $N \colon S^{k-1} \to \mathbb{R}^k$ is a continuous map defined on the unit sphere of \mathbb{R}^k . We prove a global continuation result for the *solutions* $(x, \varepsilon, \lambda)$ of this problem. Namely, under the assumption that $x_* \in S^{k-1}$ is one of the two unit eigenvectors of L corresponding to a simple eigenvalue $\lambda_* \in \mathbb{R}$, we show that, in the set of all the solutions, the connected component containing $(x_*, 0, \lambda_*)$ is either unbounded or meets a solution $(x^*, 0, \lambda^*)$ having $x^* \neq x_*$. Our result is inspired by a paper of \mathbb{R} . Chiappinelli concerning the local persistence property of eigenvalues and eigenvectors of a perturbed self-adjoint operator in a real Hilbert space.

1. Introduction

Let $T: H \to H$ be a self-adjoint bounded operator in a real Hilbert space H, and $N: S \to H$ be a Lipschitz continuous map defined on the unit sphere of H.

²⁰²⁰ Mathematics Subject Classification. 47J10, 47A75, 55M25.

Key words and phrases. Eigenvalues; eigenvectors; nonlinear spectral theory; transversality; intersection number.

A. Calamai is partially supported by G.N.A.M.P.A. – INdAM (Italy).

The first, second and fourth authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).