Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera

Abstract


In the Euclidean space $\mathbb R^k$, we consider the perturbed eigenvalue problem $Lx + \varepsilon N(x) = \lambda x$, $\|x\| = 1$, where $\varepsilon,\lambda$ are real parameters, $L$ is a linear endomorphism of $\mathbb R^k$, and $N\colon S^{k-1} \to \mathbb R^k$ is a continuous map defined on the unit sphere of $\mathbb R^k$. We prove a global continuation result for the \emph{solutions} $(x,\varepsilon,\lambda)$ of this problem. Namely, under the assumption that $x_* \in S^{k-1}$ is one of the two unit eigenvectors of $L$ corresponding to a simple eigenvalue $\lambda_* \in \R$, we show that, in the set of all the solutions, the connected component containing $(x_*,0,\lambda_*)$ is either unbounded or meets a solution $(x^*,0,\lambda^*)$ having $x^* \not= x_*$. Our result is inspired by a paper of R.\ Chiappinelli concerning the local persistence property of eigenvalues and eigenvectors of a perturbed self-adjoint operator in a real Hilbert space.

Keywords


Eigenvalues; eigenvectors; nonlinear spectral theory; transversality; intersection number

Full Text:

PREVIEW FULL TEXT

References


J.C. Alexander, A primer on connectivity, Lecture Notes in Math., Vol. 886, Springer Verlag, Berlin, New York, 1981, 455–483.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, On the persistence of the eigenvalues of a perturbed Fredholm operator of index zero under nonsmooth perturbations, Z. Anal. Anwend. 36 (2017), no. 1, 99–128.

P. Benevieri, A. Calamai, M. Furi and M.P. Pera, Global continuation of the eigenvalues of a perturbed linear operator, Ann. Mat. Pura Appl. 197 (2018), no. 4, 1131–1149.

R. Chiappinelli, Isolated connected eigenvalues in nonlinear spectral theory, Nonlinear Funct. Anal. Appl. 8 (2003), no. 4, 557–579.

R. Chiappinelli, Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a bounded self-adjoint operator, J. Math. Anal. Appl. 455 (2017), no. 2, 1720–1732.

R. Chiappinelli, What do you mean by “nonlinear eigenvalue problems”?, Axioms 7 (2018), Paper no. 39, 30 pp.

R. Chiappinelli, M. Furi and M.P. Pera, Normalized eigenvectors of a perturbed linear operator via general bifurcation, Glasg. Math. J. 50 (2008), no. 2, 303–318.

R. Chiappinelli, M. Furi and M.P. Pera, Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator, Appl. Math. Lett. 23 (2010), no. 2, 193–197.

R. Chiappinelli, M. Furi and M.P. Pera, Persistence of the normalized eigenvectors of a perturbed operator in the variational case, Glasg. Math. J. 55 (2013), no. 3, 629–638.

R. Chiappinelli, M. Furi and M.P. Pera, Topological persistence of the unit eigenvectors of a perturbed Fredholm operator of index zero, Z. Anal. Anwend. 33 (2014), no. 3, 347–367.

M. Furi and M.P. Pera, A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory, Pacific J. Math. 160 (1993), no. 3, 219–244.

V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974.

M.W. Hirsch, Differential Topology, Graduate Texts in Math., Vol. 33, Springer Verlag, Berlin, 1976.

C. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.

J.M. Milnor, Topology from the differentiable viewpoint, Univ. Press of Virginia, Charlottesville, 1965.


Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism