Topological Methods in Nonlinear Analysis Volume 55, No. 2, 2020, 257–280 DOI: 10.12775/TMNA.2019.075

© 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

FRACTIONAL HARDY–SOBOLEV ELLIPTIC PROBLEMS

Jianfu Yang — Xiaohui Yu

ABSTRACT. In this paper, we study the following singular nonlinear elliptic problem

(P)
$$\begin{cases} (-\Delta)^{\alpha/2}u = \lambda |u|^{r-2}u + \mu \frac{|u|^{q-2}u}{|x|^s} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

where Ω is a smooth bounded domain in $\mathbb{R}^N (N \ge 2)$ with $0 \in \Omega$, $\lambda, \mu > 0$, $0 < s \le \alpha$, $(-\Delta)^{\alpha/2}$ is the spectral fractional Laplacian operator with $0 < \alpha < 2$. We establish existence results and nonexistence results of problem (P) for subcritical, Sobolev critical and Hardy–Sobolev critical cases.

1. Introduction

The main objective of this paper is to consider the following fractional Hardy–Sobolev elliptic problem:

(1.1)
$$\begin{cases} (-\Delta)^{\alpha/2}u = \lambda |u|^{r-2}u + \mu \frac{|u|^{q-2}u}{|x|^s} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^N $(N \ge 2)$ with $0 \in \Omega$, $\lambda, \mu > 0$, $0 < s \le \alpha$. $(-\Delta)^{\alpha/2}$ $(0 < \alpha < 2)$ is the spectral fractional Laplacian operator which is defined as follows.

²⁰²⁰ Mathematics Subject Classification. 35J25, 47G30, 35B45, 35J70.

Key words and phrases. Critical Hardy-Sobolev exponent; decaying law; existence.

J. Yang was supported by NNSF of China, No. 11671179 and 11771300.

X. Yu was supported by NSFC No. 11771300.