REMARKS ON SOME LIMITS APPEARING IN THE THEORY OF ALMOST PERIODIC FUNCTIONS

Kosma Kasprzak

Abstract

In this note we are going to present new short proofs concerning either the existence or the non-existence of some limits appearing in the theory of almost periodic functions. Our proofs are completely different from those presented in the papers [1] and [3].

1. Introduction

In the rich theory of almost periodic functions (see e.g. [6]) problems concerning the evaluation of the limit

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{f(x)}{2+\cos x+\cos (x \sqrt{2})}, \tag{1.1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is an exponential function or a polynomial (cf. [1] or [3]), quite frequently appear. This is connected to the fact that the function

$$
x \mapsto \frac{1}{2+\cos x+\cos (x \sqrt{2})} \quad \text { for } x \in \mathbb{R}
$$

constitutes a classical example of a function which is either almost periodic in the sense of Levitan (briefly: LAP) or almost periodic with respect to the Lebesgue measure (briefly: μ.a.p.) (see e.g. [4]). In particular, in [1] the authors used the theory of continued fractions to prove that the limit (1.1) is equal to zero if

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary: 42A75; Secondary: 41A10.
 Key words and phrases. Almost periodic functions; asymptotic behavior of functions; algebraic numbers; transcendental numbers; Pell's equation, quinary system.

