Subspaces of interval maps related to the topological entropy

Xiaoxin Fan, Jian Li, Yini Yang, Zhongqiang Yang



For $a\in [0,+\infty)$, the function space $E_{\geq a}$ ($E_{> a}$; $E_{\leq a}$; $E_{< a}$) of all continuous maps from $[0,1]$ to itself whose topological entropies are larger than or equal to $a$ (larger than $a$; smaller than or equal to $a$; smaller than $a$) with the supremum metric is investigated. It is shown that the spaces $E_{\geq a}$ and $E_{> a}$ are homeomorphic to the Hilbert space $l_2$ and the spaces $E_{\leq a}$ and $E_{< a}$ are contractible. Moreover, the subspaces of $E_{\leq a}$ and $E_{< a}$ consisting of all piecewise monotone maps are homotopy dense in them, respectively.


Interval maps; topological entropy; the Hilbert space $l_2$; homotopy dense; contractible

Full Text:



R.D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515–519.

T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, Mathematical Studies Monograph Series, vol. 1, VNTL Publishers, L’viv, 1996.

L.S. Block and W.A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, vol. 1513, Springer–Verlag, Berlin, 1992.

A. Chigogidze, Infinite dimensional topology and shape theory, Handbook of Geometric Topology, North-Holland, Amsterdam, 2002, pp. 307–371.

T. Dobrowolski, Examples of topological groups homeomorphic to l2f , Proc. Amer. Math. Soc. 98 (1986), no. 2, 303–311.

T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces Cp (X) of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), no. 1, 307–324.

R. Engelking, General Topology, second ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.

M. Grinč, R. Hric and L. Snoha, The structure of the space C(I, I) from the point of view of Sharkovsky stratification, Topology 39 (2000), no. 5, 937–946.

V. Jiménez López and L. Snoha, All maps of type 2∞ are boundary maps, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1667–1673.

M.Ĭ. Kadec’, Topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23–25.

S. Kolyada, M. Misiurewicz and L. Snoha, Spaces of transitive interval maps, Ergodic Theory Dynam. Systems 35 (2015), no. 7, 2151–2170.

S. Kolyada, M. Misiurewicz and L. Snoha, Loops of transitive interval maps, Dynamics and Numbers, Contemp. Math., vol. 669, Amer. Math. Soc., Providence, RI, 2016, pp. 137–154.

N.T. Nhu, The group of measure preserving transformations of the unit interval is an absolute retract, Proc. Amer. Math. Soc. 110 (1990), no. 2, 515–522.

J. van Mill, Infinite-Dimensional Topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989, Prerequisites and introduction.

J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Mathematical Library, vol. 64, North-Holland Publishing Co., Amsterdam, 2001.

H. Yang, Z. Yang and Y. Zheng, Topological classification of function spaces with the Fell topology IV, Topology Appl. 228 (2017), 222–235.

Z. Yang, L. Chen and Y. Zheng, Topological classification of function spaces with the Fell topology III, Topology Appl. 197 (2016), 112–132.

Z. Yang and P. Yan, Topological classification of function spaces with the Fell topology I, Topology Appl. 178 (2014), 146–159.

Z. Yang, Y. Zheng and J. Chen, Topological classification of function spaces with the Fell topology II, Topology Appl. 187 (2015), 82–96.


  • There are currently no refbacks.

Partnerzy platformy czasopism