Topological Methods in Nonlinear Analysis
Volume 54, No. 2A, 2019, 445-457
DOI: 10.12775/TMNA.2019.044
(c) 2019 Juliusz Schauder Centre for Nonlinear Studies

Nicolaus Copernicus University in Toruń

A THREE SOLUTION THEOREM FOR A SINGULAR DIFFERENTIAL EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

Rajendran Dhanya - Ratnasingham Shivaji - Byunguae Son

Abstract. We study positive solutions to singular boundary value problems of the form:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=h(t) \frac{f(u)}{u^{\alpha}} \quad \text { for } t \in(0,1) \\
u(0)=0 \\
u^{\prime}(1)+c(u(1)) u(1)=0
\end{array}\right.
$$

where $0<\alpha<1, h:(0,1] \rightarrow(0, \infty)$ is continuous such that $h(t) \leq d / t^{\beta}$ for some $d>0$ and $\beta \in[0,1-\alpha)$ and $c:[0, \infty) \rightarrow[0, \infty)$ is continuous such that $c(s) s$ is nondecreasing. We assume that $f:[0, \infty) \rightarrow(0, \infty)$ is continuously differentiable such that $\left[(f(s)-f(0)) / s^{\alpha}\right]+\tau s$ is strictly increasing for some $\tau \geq 0$ for $s \in(0, \infty)$. When there exists a pair of sub-supersolutions (ψ, ϕ) such that $0 \leq \psi \leq \phi$, we first establish a minimal solution \underline{u} and a maximal solution \bar{u} in $[\psi, \phi]$. When there exist two pairs of sub-supersolutions $\left(\psi_{1}, \phi_{1}\right)$ and $\left(\psi_{2}, \phi_{2}\right)$ where $0 \leq \psi_{1} \leq \psi_{2} \leq \phi_{1}$, $\psi_{1} \leq \phi_{2} \leq \phi_{1}$ with $\psi_{2} \not \leq \phi_{2}$, and ψ_{2}, ϕ_{2} are not solutions, we next establish the existence of at least three solutions u_{1}, u_{2} and u_{3} satisfying $u_{1} \in\left[\psi_{1}, \phi_{2}\right], u_{2} \in\left[\psi_{2}, \phi_{1}\right]$ and $u_{3} \in\left[\psi_{1}, \phi_{1}\right] \backslash\left(\left[\psi_{1}, \phi_{2}\right] \cup\left[\psi_{2}, \phi_{1}\right]\right)$.

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary: 34B16, 34B18; Secondary: 35J66
 Key words and phrases. Singular boundary value problem; nonlinear boundary conditions; three solution theorem.

