Topological Methods in Nonlinear Analysis Volume 54, No. 2A, 2019, 445–457 DOI: 10.12775/TMNA.2019.044

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

A THREE SOLUTION THEOREM FOR A SINGULAR DIFFERENTIAL EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

Rajendran Dhanya — Ratnasingham Shivaji — Byungjae Son

ABSTRACT. We study positive solutions to singular boundary value problems of the form:

$$\begin{cases} -u'' = h(t) \frac{f(u)}{u^{\alpha}} & \text{for } t \in (0, 1), \\ u(0) = 0, \\ u'(1) + c(u(1))u(1) = 0, \end{cases}$$

where $0 < \alpha < 1$, $h: (0,1] \to (0,\infty)$ is continuous such that $h(t) \leq d/t^{\beta}$ for some d > 0 and $\beta \in [0, 1 - \alpha)$ and $c: [0, \infty) \to [0, \infty)$ is continuous such that c(s)s is nondecreasing. We assume that $f: [0, \infty) \to (0, \infty)$ is continuously differentiable such that $[(f(s) - f(0))/s^{\alpha}] + \tau s$ is strictly increasing for some $\tau \geq 0$ for $s \in (0, \infty)$. When there exists a pair of sub-supersolutions (ψ, ϕ) such that $0 \leq \psi \leq \phi$, we first establish a minimal solution \underline{u} and a maximal solution \overline{u} in $[\psi, \phi]$. When there exist two pairs of sub-supersolutions (ψ_1, ϕ_1) and (ψ_2, ϕ_2) where $0 \leq \psi_1 \leq \psi_2 \leq \phi_1$, $\psi_1 \leq \phi_2 \leq \phi_1$ with $\psi_2 \not\leq \phi_2$, and ψ_2 , ϕ_2 are not solutions, we next establish the existence of at least three solutions u_1, u_2 and u_3 satisfying $u_1 \in [\psi_1, \phi_2], u_2 \in [\psi_2, \phi_1]$ and $u_3 \in [\psi_1, \phi_1] \setminus ([\psi_1, \phi_2] \cup [\psi_2, \phi_1])$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 34B16, 34B18; Secondary: 35J66. Key words and phrases. Singular boundary value problem; nonlinear boundary conditions; three solution theorem.