Topological Methods in Nonlinear Analysis Volume 54, No. 1, 2019, 247–256 DOI: 10.12775/TMNA.2019.040

© 2019 Juliusz Schauder Centre for Nonlinear Studies

THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN \mathbb{R}^n

Taras Banakh — Eliza Jabłońska — Wojciech Jabłoński

ABSTRACT. We prove that for a continuum $K \subset \mathbb{R}^n$ the sum K^{+n} of n copies of K has non-empty interior in \mathbb{R}^n if and only if K is not flat in the sense that the affine hull of K coincides with \mathbb{R}^n . Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset $A \subset K$ the sum A^{+n} of n copies of A is not meager in \mathbb{R}^n (and then the sum A^{+2n} of 2n copies of the analytic set A has non-empty interior in \mathbb{R}^n and the set $(A-A)^{+n}$ is a neighbourhood of zero in \mathbb{R}^n). This implies that a mid-convex function $f:D \to \mathbb{R}$ defined on an open convex subset $D \subset \mathbb{R}^n$ is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D.

1. Introduction

Let X be a linear topological space over the field of real numbers. A function $f: X \to \mathbb{R}$ is called *additive* if f(x+y) = f(x) + f(y) for all $x, y \in X$.

A function $f: D \to \mathbb{R}$ defined on a convex subset $D \subset X$ is called *mid-convex* if $f((x+y)/2) \le (f(x)+f(y))/2$ for all $x,y \in D$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 26B05, 54D05; Secondary: 26B25, 54C05, 54C30.

Key words and phrases. Euclidean space; additive function; mid-convex function; continuity; continuum; analytic set; Ger–Kuczma classes.