Topological Methods in Nonlinear Analysis Volume 54, No. 2B, 2019, 887–906 DOI: 10.12775/TMNA.2019.031

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

## EXISTENCE, LOCALIZATION AND STABILITY OF LIMIT-PERIODIC SOLUTIONS TO DIFFERENTIAL EQUATIONS INVOLVING CUBIC NONLINEARITIES

JAN ANDRES — DENIS PENNEQUIN

Dedicated to the memory of Professor Ioan I. Vrabie

ABSTRACT. We will prove, besides other things like localization and (in)stability, that the differential equations  $x' + x^3 - \lambda x = \varepsilon r(t)$ ,  $\lambda > 0$ , and  $x'' + x^3 - x = \varepsilon r(t)$ , where  $r \colon \mathbb{R} \to \mathbb{R}$  are uniformly limit-periodic functions, possess for sufficiently small values of  $\varepsilon > 0$  uniformly limit-periodic solutions, provided r in the first-order equation is strictly positive. As far as we know, these are the first nontrivial effective criteria, obtained for limit-periodic solutions of nonlinear differential equations, in the lack of global lipschitzianity restrictions. A simple illustrative example is also indicated for difference equations.

## 1. Introduction

As our title indicates, the main aim of the present paper is to study limitperiodic solutions of the first-order and the second-order differential equations involving cubic nonlinearities and limit-periodic forcing terms. The investigation of limit-periodic nonlinear oscillations is a delicate problem, especially because the space of limit-periodic functions endowed with the sup-norm is complete, but not linear. That is why the related results are, unlike those for periodic

<sup>2010</sup> Mathematics Subject Classification. 34C15, 34C27, 34K14.

*Key words and phrases.* Limit-periodic solutions; differential equations; cubic nonlinearity; existence of solutions; localization; (in)stability; essentiality.

The first author was supported by the grant IGA\_PrF\_2018\_024 "Mathematical Models" of the Internal Grant Agency of Palacký University in Olomouc.