Topological Methods in Nonlinear Analysis Volume 54, No. 1, 2019, 131–139 DOI: 10.12775/TMNA.2019.028

© 2019 Juliusz Schauder Centre for Nonlinear Studies

KRASNOSEL'SKIĬ–SCHAEFER TYPE METHOD IN THE EXISTENCE PROBLEMS

Calogero Vetro — Dariusz Wardowski

ABSTRACT. We consider a general integral equation satisfying algebraic conditions in a Banach space. Using Krasnosel'skiĭ—Schaefer type method and technical assumptions, we prove an existence theorem producing a periodic solution of some nonlinear integral equation.

1. Introduction and preliminaries

Let $(\mathcal{B}, \|\cdot\|)$ be the Banach space of continuous Γ -periodic functions $\varphi \colon \mathbb{R} \to \mathbb{R}$ with $\Gamma > 0$ and the supremum norm. In this paper, we study the following integral equation

(1.1)
$$\varphi(t) = f(t, \varphi(t)) - \int_{t-\alpha}^{t} D(t, s)g(s, \varphi(s)) ds,$$

where $\alpha > 0, f, g, D \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous functions satisfying the following assumptions:

(A1)
$$f(t+\Gamma,x)=f(t,x), D(t+\Gamma,s+\Gamma)=D(t,s), g(t+\Gamma,x)=g(t,x)$$
 for all $s,t,x\in\mathbb{R}$,

(A2)
$$D(t, t-\alpha) = 0$$
, $D_{st}(t, s) \le 0$, $D_{s}(t, s) \ge 0$ for all $t \in \mathbb{R}$ and $s \in (t-\alpha, t)$,

(A3) the function D_{st} is continuous,

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary:\ 47H10,\ 47N20.$

Key words and phrases. F-contraction; compact operator; nonlinear integral equation; Krasnosel'skiĭ–Schaefer fixed point theorem.

The second author was financially supported by the National Science Center, Poland. Grant with a registration number 2017/01/X/ST1/00390.