Topological Methods in Nonlinear Analysis Volume 54, No. 1, 2019, 109–130 DOI: 10.12775/TMNA.2019.027

© 2019 Juliusz Schauder Centre for Nonlinear Studies

A WEIGHTED TRUDINGER-MOSER TYPE INEQUALITY AND ITS APPLICATIONS TO QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL GROWTH IN THE WHOLE EUCLIDEAN SPACE

Francisco S.B. Albuquerque — Sami Aouaoui

ABSTRACT. We establish a version of the Trudinger–Moser inequality involving unbounded or decaying radial weights in weighted Sobolev spaces. In the light of this inequality and using a minimax procedure we also study existence of solutions for a class of quasilinear elliptic problems involving exponential critical growth.

1. Introduction and main results

We recall that if Ω is a bounded domain in \mathbb{R}^n $(n \geq 2)$, the classical Trudinger–Moser inequality (cf. [31], [38]) asserts that $e^{\alpha |u|^{n'}} \in L^1(\Omega)$, for all $u \in W_0^{1,n}(\Omega)$ and $\alpha > 0$ and there exists a constant C(n) > 0 such that

(1.1)
$$\sup_{\|u\|_n \le 1} \int_{\Omega} e^{\alpha |u|^{n'}} dx \le C(n) |\Omega|, \quad \text{if } \alpha \le \alpha_n,$$

where n' = n/(n-1), $\alpha_n = n\omega_{n-1}^{1/(n-1)}$, $||u||_n := \left(\int_{\Omega} |\nabla u|^n dx\right)^{1/n}$ and ω_{n-1} is the surface area of the unit sphere in \mathbb{R}^n . Moreover, the inequality (1.1)

²⁰¹⁰ Mathematics Subject Classification. Primary: 35A23; Secondary: 35B33, 35J50, 35J92.

 $Key\ words\ and\ phrases.$ Trudinger–Moser inequality; quasilinear elliptic problems; weight functions; Exponential critical growth; Mountain pass theorem.

The first author was supported by Programa de Incentivo à Pós-Graduação e Pesquisa (PROPESQ) Edital 2015, UEPB.