Multiplicity of positive solutions for fractional Laplacian equations involving critical nonlinearity

Jinguo Zhang, Xiaochun Liu, Hongying Jiao


In this paper, we consider the following problem involving fractional Laplacian operator \begin{equation*} (-\Delta)^{s} u=\lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{s}-2}u\quad \text{in } \Omega,\qquad u=0\quad \text{on } \partial\Omega, \end{equation*} where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}$, $0< s< 1$, $2^*_{s}={2N}/({N-2s})$, and $(-\Delta)^{s}$ is the fractional Laplacian. We will prove that there exists $\lambda_{*}> 0$ such that the problem has at least two positive solutions for each $\lambda\in (0,\lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.


Fractional Laplacian equation; critical Sobolev exponent; variational methods

Full Text:



R.A. Adams, Sobolev Space, Pure Appl. Math. vol 65, Academic Press, New York, London, 1975.

D. Applebaum, Lévy process-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336–1347.

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equation 252 (2012), 6133–6126.

B. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh. Sect. A 143 (2013), 39–71.

H. Brezis and L. Nirengerg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

X. Cabré and J. Solá-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), 1678–1732.

X. Cabré and J. Tan, Positive solutions for nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN , Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 443–463.

W. Chi, S. Kim and K. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Functional Analysis 266 (2014), 6531–6598.

J. Dávila, M. de Pino and J. Wei, Concentration standing wave for the fractional nonlinear Schrödinger equation, J. Differential Equations 256 (2014), 858–892.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237–1262.

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016), no. 9, 1671–1726.

A. Garroni and S. Müller, Γ-limit of a phase-field model of dislocations, SIMA J. Math. Anal.36 (2005) , 1943–1964.

L. Lions and E. Magenes, Problémes aux Limits Non Homogénes et Applications, vol. 1, Trav. et Rech. Math., vol. 17, Dunod, Paris, 1968.

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. 50 (2014), 799–829.

G. Palatucci and A. Pisante, A global compactness type results for Palais–Smale sequences in fractional Sobolev space, Nonlinear Anal. 117 (2015), 1–7; (2014), 799–829.

R. Servadei and E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.

R. Servadei and E. Valdinoci, A Brezis–Nirenberg result for nonlocal critical equations in low dimension, Comm. Pure Appl. Anal. 12 (2013), no. 6, 2445–2464.

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.

X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent, Comm. Pure Appl. Anal. 13 (2014), no. 2, 567–584.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112.

J. Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. 42 (2011), 21–41.

C. Tarantello, On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281–304.

T.F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and signchanging weight function, Comm. Pure Appl. Anal. 7 (2008), 383–405.

J. Zhang and X. Liu, The Nehari manifold for a semilinear elliptic problem with the nonlinear boundary condition, J. Math. Anal. Appl. 400 (2013), 100–119.

J. Zhang and X. Liu, Three solutions for a fractional elliptic problems with critical and supercritical growth, Acta Math. Sci. 36 B (2016), no. 6, 1–13.


  • There are currently no refbacks.

Partnerzy platformy czasopism