LIPSCHITZ RETRACTIONS ONTO SPHERE VS SPHERICAL CUP IN A HILBERT SPACE

Jumpot Intrakul - Phichet Chaoha - Wacharin Wichiramala

Abstract

We prove that, in every infinite dimensional Hilbert space, there exists $t_{0}>-1$ such that the smallest Lipscthiz constant of retractions from the unit ball onto its boundary is the same as the smallest Lipschitz constant of retractions from the unit ball onto its t-spherical cup for all $t \in\left[-1, t_{0}\right]$.

1. Introduction and preliminaries

For a given Banach space X, it is known that X has infinite dimension if and only if there exists a lipschitzian retraction from the closed unit ball B_{X} onto its boundary (the unit sphere) S_{X} (see [10] and [3]). Motivated by this fact, it is natural to ask for the value of the smallest Lipschitz constant of such a retraction, which is defined to be

$$
k_{0}(X):=\inf \left\{k: \text { there exists a } k \text {-lipschitzian retraction from } B_{X} \text { onto } S_{X}\right\} .
$$

This question is generally regarded as the optimal retraction problem from the unit ball onto its sphere. Although the exact value of $k_{0}(X)$ has not been found even for one space X, some approximations are discovered. For example, see Table 1.

For the case of a Hilbert space H, the development of upper bounds of $k_{0}(H)$ in [8], [9], [4] and [2] is all based on the direct, yet very technical, constructions

[^0]| Infinite dimensional space X | Approximation | Reference(s) |
| :---: | :---: | :---: |
| Banach space | $k_{0}(X) \geq 3$ | $[8]$ |
| Hilbert space | $4.58<k_{0}(X)<28.99$ | $[5]$ and [2] |
| ℓ_{1} | $4 \leq k_{0}(X) \leq 8$ | $[8]$ and $[1]$ |
| ℓ_{∞} | $3 \leq k_{0}(X) \leq 22.96$ | $[8]$ and $[5]$ |
| $C[0,1], B C(\mathbb{R}), c$ and c_{0} | $3 \leq k_{0}(X) \leq 14.93$ | $[8]$ and $[12]$ |
| $B C_{0}(\mathbb{R})$ | $3<k_{0}(X) \leq 6.83$. | $[8]$ and [11] |

Table 1. Some approximations of $k_{0}(X)$'s.
of retractions from B_{H} onto S_{H}. Until 2012, in [6], a new approach is introduced by considering a lipschitzian retraction from B_{H} onto its so-called spherical cup, which is a certain part of S_{H}, and it is shown that the smallest Lipschitz constant of such a retraction may help approximating $k_{0}(H)$. More precisely, let $(H,\langle\cdot, \cdot\rangle)$ be a (real) Hilbert space, $B=B_{H}, S=S_{H}$, e a unit vector in H and $E=(\operatorname{span}\{\mathrm{e}\})^{\perp}$. Then each element of H will be written in the form of $\alpha \mathrm{e} \oplus \beta x$, for some $\alpha, \beta \in \mathbb{R}$ and $x \in E \cap S$, with $\|\alpha \mathrm{e} \oplus \beta x\|^{2}=\alpha^{2}+\beta^{2}$. For each $t \in[-1,1]$,

- the parallel hyperplane is $E_{t}:=E+t \mathrm{e}$;
- the parallel ball section is $B_{t}:=B \cap E_{t}$;
- the lense cut by E_{t} is $D_{t}:=\{x \in B:\langle x, \mathrm{e}\rangle \geq t\}$;
- the spherical cup cut by E_{t} is $S_{t}:=D_{t} \cap S$
(see Figure 1).

Figure 1. The sets E_{t}, B_{t}, D_{t}, and S_{t}.

Define $\kappa:[-1,1] \rightarrow \mathbb{R} \cup\{\infty\}$ by
$\kappa(t)=\inf \left\{k:\right.$ there exists a k-lipschitzian retraction from B onto $\left.S_{t}\right\}$.

Here are some properties of $\kappa(t)$ (see [6] and [7] for details):

- If $\operatorname{dim} H<\infty$,

$$
\kappa(t)= \begin{cases}0 & \text { if } t=1 \\ \frac{\arccos t}{\sqrt{1-t^{2}}} & \text { if }-1<t<1 \\ \infty & \text { if } t=-1\end{cases}
$$

- If $\operatorname{dim} H=\infty$, then $\kappa(1)=0, \kappa(-1)=k_{0}(H), \kappa(t) \leq(\arccos t) / \sqrt{1-t^{2}}$, and there exists $t_{0}>-1$ such that

$$
k_{0}(H) \leq \kappa(t) \leq \frac{3 \sqrt{3}}{2} k_{0}(H) \quad \text { for all }-1 \leq t \leq t_{0}
$$

In particular, the last inequality sheds some light on a relationship between $\kappa(t)$ and $k_{0}(H)$, and suggests the quest for the sharper version. The aim of this work is to close the gap by showing that both $k_{0}(H)$ and $\kappa(t)$ indeed coincides for every $-1 \leq t \leq t_{0}$.

Fix $t \in(-1,1)$. For each $x \in S \cap E$, let $B_{t, x}=B_{t} \cap \operatorname{span}\{\mathrm{e}, x\}$ and $S_{t, x}=$ $S_{t} \cap \operatorname{span}\{\mathrm{e}, x\}$ (see Figure 2 (a)). That is,

- $B_{t, x}=$ the segment of length $2 \sqrt{1-t^{2}}$ in 2-dimensional subspace $\operatorname{span}\{\mathrm{e}, x\}$;
- $S_{t, x}=$ the arc of length $2 \arccos t$ from unit circle in 2-dimensional subspace $\operatorname{span}\{\mathrm{e}, x\}$.

Figure 2. (a) The sets $B_{t, x}$ and $S_{t, x}$, and (b) the map $h_{t, x}$.

Obviously, there exists a natural nonexpansive homeomorphism $h_{t, x}: S_{t, x} \rightarrow$ $B_{t, x}$ fixing $B_{t, x} \cap S_{t, x}$ by uniform scaling between arc and segment. To be
precise, let $\phi=\arccos t$. Then, for each $P_{\alpha}=(\cos \alpha \phi) \mathrm{e} \oplus(\sin \alpha \phi) x \in S_{t, x}$ where $\alpha \in[-1,1]$,
(1.1) $\quad h_{t, x}\left(P_{\alpha}\right)=h_{t, x}((\cos \alpha \phi) \mathrm{e} \oplus(\sin \alpha \phi) x)=t \mathrm{e} \oplus\left(\alpha \sqrt{1-t^{2}}\right) x$
(see Figure $2(\mathrm{~b})$). Then, by letting $h:=\left(\bigcup_{x \in S \cap E} h_{t, x}: S_{t} \rightarrow B_{t}\right), h$ is also a nonexpansive homeomorphism and fixes $\bigcup_{x \in S \cap E} B_{t, x} \cap S_{t, x}=B_{t} \cap S_{t}$ (see [7] for details).

According to [7], there is a nonexpansive extension $\widetilde{h}: D_{t} \rightarrow B_{t}$ of h which is a retraction (see [7, cf. the map $\left(\left.f\right|_{B_{t}}\right)^{-1} \circ f$ with Properties 2.3 (iv) and (vi)]). With this construction in mind, we may assume in general throughout this work that there exists a nonexpansive retraction from any lense cut onto its parallel ball section whose restriction on its spherical cup is a homeomorphism.

2. Main result

By recalling from [6] that there exists a constant $t_{0}>-1$ such that $\kappa(t) \geq$ $k_{0}(H)$ for all $-1 \leq t \leq t_{0}$, the main result can be stated as follows.

Theorem 2.1. In every infinite dimensional Hilbert space $H, \kappa(t)=k_{0}(H)$ for all $-1 \leq t \leq t_{0}$.

According to the property of t_{0} as above, the proof of this theorem can be accomplished by showing that $\kappa(t) \leq k_{0}(H)$ for all $-1 \leq t \leq t_{0}$. Therefore it suffices to construct, for arbitrary $\varepsilon>0$, a $\left(k_{0}(H)+\varepsilon\right)$-retraction $\varrho_{\varepsilon, t}: B \rightarrow S_{t}$, which can be done in the following way.

Figure 3. The set A_{i}.

For each $i \in[-1,1]$, let

$$
A_{i}= \begin{cases}S\left(\frac{1}{i} \mathrm{e} ; \sqrt{\frac{1}{i^{2}}-1}\right) \cap B & \text { if } i \neq 0 \\ B_{0} & \text { if } i=0\end{cases}
$$

and

$$
C_{i}=\overline{\operatorname{co}} A_{i}=\overline{\left\{\alpha x+(1-\alpha) y: 0 \leq \alpha \leq 1 \text { and } x, y \in A_{i}\right\}},
$$

where $B(p ; r)$ and $S(p ; r)$ denote the closed ball and the sphere centered at $p \in H$ with radius $r>0$, respectively (see Figure 3).

Notice that, for each $i \neq 0$, since A_{i} and C_{i} are indeed homeomorphic to a spherical cup and a lense cut, respectively, of the ball $B\left(\mathrm{e} / i ; \sqrt{1 / i^{2}-1}\right)$, there is a nonexpansive retraction $h_{i}: C_{i} \rightarrow B_{i}$ such that $h_{A_{i}}:=\left(\left.h_{i}\right|_{A_{i}}: A_{i} \rightarrow B_{i}\right)$ is a homeomorphism by the construction mentioned in the previous section. That is, by letting $\phi=\arccos \sqrt{1-i^{2}}$ and applying (1.1) together with translation of center $(0 \rightarrow \mathrm{e} / i \oplus 0)$ and scaling of radius $\left(1 \rightarrow \sqrt{1 / i^{2}-1}\right)$, the formula of $h_{A_{i}}$ is given as follows. For each

$$
P_{\alpha}=\left(\frac{1}{i} \mp \sqrt{\frac{1}{i^{2}}-1} \cdot \cos \alpha \phi\right) \mathrm{e} \oplus\left(\sqrt{\frac{1}{i^{2}}-1} \cdot \sin \alpha \phi\right) x \in A_{i}
$$

where $\alpha \in[0,1]$ and $x \in S \cap E$ (here, ' - ' is applied if $i>0$ while ' + ' is applied if $i<0$ (see Figure 4 (a)),

$$
\begin{array}{r}
h_{A_{i}}\left(P_{\alpha}\right)=h_{A_{i}}\left(\left(\frac{1}{i} \mp \sqrt{\frac{1}{i^{2}}-1} \cdot \cos \alpha \phi\right) \mathrm{e} \oplus\left(\sqrt{\frac{1}{i^{2}}-1} \cdot \sin \alpha \phi\right) x\right) \tag{2.1}\\
=i \mathrm{e} \oplus\left(\alpha \sqrt{1-i^{2}}\right) x
\end{array}
$$

(see Figure $4(\mathrm{~b})$). Additionally, let $h_{0}=\operatorname{id}_{A_{0}}=\operatorname{id}_{B_{0}}$. Then $h_{0}^{-1}=h_{0}: B_{0} \rightarrow B_{0}$.
Recall the following propositions.
Proposition 2.2. Let A be a closed and convex subset of a Hilbert space H. Then the nearest point projection onto A, which is defined by

$$
\pi_{A}(x)=\{a \in A:\|x-a\|=d(x, A)\}
$$

for all $x \in H$, is nonexpansive.
Proposition 2.3. Let A_{1}, \ldots, A_{n} be subsets of a Hilbert space H such that $A=\bigcup_{i=1}^{n} A_{i}$ is convex, and $f: A \rightarrow H$. Denote by $[x, y]$ the segment joining x and y for every $x, y \in H$. Assume that $\left.f\right|_{A_{i}}$ is k-lipschitzian for every $i=1, \ldots, n$, and that for each $x, y \in A$, there are $a_{0}=x, a_{1}, \ldots, a_{m-1}, a_{m}=y \in[x, y]$ such that for each $j=1, \ldots, m,\left[a_{j-1}, a_{j}\right]$ is a subset of A_{i} for some $i=1, \ldots, n$. Then f is also k-lipschitzian.

Figure 4. (a) The point P_{α}, and (b) the map $h_{A_{i}}$.

Now, observe that

$$
\mathscr{P}:=\left\{\bigcup_{i>0} S\left(\frac{1}{i} \mathrm{e} ; \sqrt{\frac{1}{i^{2}}-1}\right), E, \bigcup_{i<0} S\left(\frac{1}{i} \mathrm{e} ; \sqrt{\frac{1}{i^{2}}-1}\right)\right\}
$$

is a partition of H. For each $t \in(-1,0)$, we divide B into three parts as follows (see Figure 5):
(1) C_{t};
(2) $L_{t}=\overline{B-D_{t}}$;
(3) $U_{t}=\overline{B-\left(C_{t} \cup L_{t}\right)}$.

Observe that U_{t} is the disjoint union $\underset{t \leq i \leq 1}{\coprod} A_{i}$. If $\alpha \mathrm{e} \oplus \beta x \in U_{t}$, then $t \leq$ α and $\alpha^{2}+\beta^{2} \leq 1$. This implies that $\alpha \mathrm{e} \oplus \beta x \in A_{2 \alpha /\left(\alpha^{2}+\beta^{2}+1\right)}$ where $t \leq$ $2 \alpha /\left(\alpha^{2}+\beta^{2}+1\right) \leq 1$ because

$$
\begin{aligned}
& \left\|\left(\frac{1}{2 \alpha /\left(\alpha^{2}+\beta^{2}+1\right)} \mathrm{e} \oplus 0\right)-(\alpha \mathrm{e} \oplus \beta x)\right\|^{2}=\left|\frac{\beta^{2}-\alpha^{2}+1}{2 \alpha}\right|^{2}+|\beta|^{2} \\
& \quad=\frac{\alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}-2 \alpha^{2}+2 \beta^{2}+1}{4 \alpha^{2}} \\
& \quad=\frac{\alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}+2 \alpha^{2}+2 \beta^{2}+1}{4 \alpha^{2}}-1=\frac{1}{\left(2 \alpha /\left(\alpha^{2}+\beta^{2}+1\right)\right)^{2}}-1
\end{aligned}
$$

and

$$
t=\frac{\left(\alpha^{2}+\beta^{2}+1\right) t}{\alpha^{2}+\beta^{2}+1} \leq \frac{2 t}{\alpha^{2}+\beta^{2}+1} \leq \frac{2 \alpha}{\alpha^{2}+\beta^{2}+1} \leq \frac{\alpha^{2}+1}{\alpha^{2}+\beta^{2}+1} \leq 1
$$

Figure 5. Subsets C_{t}, L_{t} and U_{t} of B, and the map $\varrho_{\varepsilon, t}$ in each case.

Moreover, $A_{i} \cap A_{j}=\emptyset$ for all $t \leq i, j \leq 1$ with $|i|<|j|$. This follows from two cases below:
(1) $i j \leq 0$: since \mathscr{P} forms a partition of H, this condition implies that A_{i} and A_{j} must lie on different parts of \mathscr{P}. Thus $A_{i} \cap A_{j}=\emptyset$;
(2) $i j>0$: assume without loss of generality that $0<i<j \leq 1$. Then $\sqrt{1-j^{2}} \leq 1$, which implies that

$$
i-j+(j-i) \sqrt{1-j^{2}}=(j-i)\left(-1+\sqrt{1-j^{2}}\right) \leq 0
$$

(it is strict if $j<1$). Thus, for $j<1$,

$$
\begin{gathered}
\left\|\frac{1}{i} \mathrm{e}-\frac{1}{j} \mathrm{e}\right\|+\sqrt{\frac{1}{j^{2}}-1}=\left|\frac{1}{i}-\frac{1}{j}\right|+\sqrt{\frac{1}{j^{2}}-1} \\
=\sqrt{\left(\left|\frac{1}{i}-\frac{1}{j}\right|+\sqrt{\frac{1}{j^{2}}-1}\right)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& =\sqrt{\frac{1}{i^{2}}+\frac{2}{j^{2}}-\frac{2}{i j}-1+\frac{2(j-i)}{i j} \sqrt{\frac{1}{j^{2}}-1}} \\
& =\sqrt{\frac{1}{i^{2}}-1+\frac{2}{i j^{2}}\left(i-j+(j-i) \sqrt{1-j^{2}}\right)}<\sqrt{\frac{1}{i^{2}}-1}
\end{aligned}
$$

while, for $j=1$,

$$
\left\|\frac{1}{i} \mathrm{e}-\frac{1}{j} \mathrm{e}\right\|+\sqrt{\frac{1}{j^{2}}-1}=\frac{1}{i}-1<\sqrt{\frac{1}{i^{2}}-1} .
$$

Therefore

$$
A_{i} \cap A_{j} \subseteq S\left(\frac{1}{i} \mathrm{e} ; \sqrt{\frac{1}{i^{2}}-1}\right) \cap S\left(\frac{1}{j} \mathrm{e} ; \sqrt{\frac{1}{j^{2}}-1}\right)=\emptyset
$$

Now, let $\varepsilon>0$ and $k_{\varepsilon}=k_{0}(H)+\varepsilon$. By the definition of $k_{0}(H)$, there exists a k_{ε}-lipschitzian retraction $r_{\varepsilon}: B \rightarrow S$. For each $i \in[t, 1]$, define a k_{ε}-lipschitzian retraction $r_{\varepsilon, i}: B_{i} \rightarrow S \cap B_{i}$ by

$$
\begin{equation*}
r_{\varepsilon, i}(i \mathrm{e} \oplus \beta x)=i \mathrm{e} \oplus\left(\sqrt{1-i^{2}}\right) r_{\varepsilon}\left(\frac{\beta}{\sqrt{1-i^{2}}} x\right), \quad i \mathrm{e} \oplus \beta x \in B_{i} \tag{2.2}
\end{equation*}
$$

Let $\pi_{t}: L_{t} \rightarrow B_{t}$ be the nearest point projection which is obviously nonexpansive, and define the map $\varrho_{\varepsilon, t}: B \rightarrow S_{t}$ by

$$
\varrho_{\varepsilon, t}(P)= \begin{cases}r_{\varepsilon, t} \circ h_{t}(P) & \text { if } P \in C_{t} ; \\ r_{\varepsilon, t} \circ \pi_{t}(P) & \text { if } P \in L_{t} ; \\ r_{\varepsilon, i} \circ h_{A_{i}}(P) & \text { if } P \in A_{i} \subseteq U_{t} \text { for some } i \in[t, 1]\end{cases}
$$

(see Figure 5 in frames). Clearly, $\varrho_{\varepsilon, t}$ is well-defined with $\left.\varrho_{\varepsilon, t}\right|_{S_{t}}=\operatorname{id}_{S_{t}}$. Furthermore, the restrictions $\left.\varrho_{\varepsilon, t}\right|_{C_{t}}$ and $\left.\varrho_{\varepsilon, t}\right|_{L_{t}}$ are k_{ε}-lipschitzian. If $\left.\varrho_{\varepsilon, t}\right|_{U_{t}}$ is k_{ε}-lipschitzian, then so is $\varrho_{\varepsilon, t}$ because $C_{t} \cup L_{t} \cup U_{t}=B$ is convex and satisfies the condition of Proposition 2.3.

According to the above argument, it remains to show that
Claim 2.4. For each $t \in(-1,0)$ and $\varepsilon>0,\left.\varrho_{\varepsilon, t}\right|_{U_{t}}$ is k_{ε}-lipschitzian.

3. Proof of Claim 2.4

In order to prove the Claim 2.4, the following lemma is required.
Lemma 3.1 (Ptolemy's Theorem, Isoceles Trapezoid Version). Let $\square A B C D$ be an isosceles trapezoid with lengths l for both legs, a and b for other sides and d for the diagonal (see Figure 6). Then $d^{2}=a b+l^{2}$.

Proof. By letting $\phi=\angle D A B=\angle C B A$, the proof follows from the relation

$$
d^{2}=a^{2}+l^{2}-2 a l \cos \phi=a(a-2 l \cos \phi)+l^{2}=a b+l^{2} .
$$

Figure 6. The Isosceles trapezoid in Lemma 3.1.

(a)

(b)

Figure 7. (a) The set A_{ϕ}, and (b) The representation of P on A_{ϕ}.

Let us begin the proof of claim with this observation: for each $i \in(0,1)$, there is a unique $\phi \in(0, \pi / 2)$ so that $\sin \phi=i$. Then, in this case, $\csc \phi=1 / i$, $\cot \phi=\sqrt{1 / i^{2}-1}$ and A_{i} corresponds to

$$
A_{\phi}=\{x \in B:\|x-(\csc \phi) \mathrm{e}\|=\cot \phi\}
$$

(see Figure $7(\mathrm{a})$).

Similarly, $B_{i}, h_{i}, h_{A_{i}}=\left.h_{i}\right|_{A_{i}}$ and $r_{\varepsilon, i}$ correspond to $B_{\phi}, h_{\phi}, h_{A_{\phi}}=\left.h_{\phi}\right|_{A_{\phi}}$ and $r_{\varepsilon, \phi}$, respectively. Moreover, each element P of A_{ϕ} is of the form

$$
P=(\csc \phi-\cot \phi \cos \alpha \phi) \mathrm{e} \oplus(\cot \phi \sin \alpha \phi) x=: P_{\alpha \phi, x},
$$

for some $\alpha \in[0,1]$ and $x \in S \cap E$ (see Figure 7 (b)), and, according to (1.1) and (2.2), the explicit formulas of $h_{A_{\phi}}: A_{\phi} \rightarrow B_{\phi}$ and $r_{\varepsilon, \phi}: B_{\phi} \rightarrow S \cap B_{\phi}$, expressed in terms of this representation, are
(3.1) $\quad h_{A_{\phi}}(P)=h_{A_{\phi}}((\csc \phi-\cot \phi \cos \alpha \phi) \mathrm{e} \oplus(\cot \phi \sin \alpha \phi) x)$

$$
=(\sin \phi) \mathrm{e} \oplus(\alpha \cos \phi) x
$$

$$
\begin{equation*}
r_{\varepsilon, \phi}((\sin \phi) \mathrm{e} \oplus(\alpha \cos \phi) x)=(\sin \phi) \mathrm{e} \oplus(\cos \phi) r_{\varepsilon}(\alpha x) \tag{3.2}
\end{equation*}
$$

where $\phi \in(0, \pi / 2), \alpha \in[0,1]$ and $x \in S$.

(a)

(b)

Figure 8. (a) Points P, Q, P^{\prime} and Q^{\prime}, and (b) points M, N, M^{\prime} and N^{\prime}.

Proof of Claim 2.4. Let $t \in(-1,0), \varepsilon>0$ and $U_{t}^{+}=\bigcup_{0<i<1} A_{i}$. Firstly, we will show that $\left.\varrho_{\varepsilon, t}\right|_{U_{t}^{+}}$is k_{ε}-lipschitzian. Let

$$
\begin{aligned}
P & =P_{\alpha \phi, x}=(\csc \phi-\cot \phi \cos \alpha \phi) \mathrm{e} \oplus(\cot \phi \sin \alpha \phi) x \in A_{\phi} \\
Q & =Q_{\beta \psi, y}=(\csc \psi-\cot \psi \cos \beta \psi) \mathrm{e} \oplus(\cot \psi \sin \beta \psi) y \in A_{\psi},
\end{aligned}
$$

for some $\phi, \psi \in(0, \pi / 2)$ with $\phi \leq \psi, \alpha, \beta \in[0,1]$, and $x, y \in S \cap E$. In addition, let

$$
\begin{aligned}
& P^{\prime}=P_{\beta \psi, x}^{\prime}=(\csc \psi-\cot \psi \cos \beta \psi) \mathrm{e} \oplus(\cot \psi \sin \beta \psi) x \in A_{\psi}, \\
& Q^{\prime}=Q_{\alpha \phi, y}^{\prime}=(\csc \phi-\cot \phi \cos \alpha \phi) \mathrm{e} \oplus(\cot \phi \sin \alpha \phi) y \in A_{\phi},
\end{aligned}
$$

$\delta=\psi-\phi$ and $\xi=\angle(x, y) \in[0, \pi]$ (see Figure $8(\mathrm{a})$).
The case $\phi=\psi$ is trivial because $\left.\varrho_{\varepsilon, t}\right|_{A_{\phi} \cup A_{\psi}}=\left.\varrho_{\varepsilon, t}\right|_{A_{\phi}}=r_{\varepsilon, \phi} \circ h_{A_{\phi}}$, which is already k_{ε}-lipschitzian by nonexpansive-ness of $h_{A_{\phi}}$. Assume $\phi<\psi$. Let us assume the following technical condition (\star), which will be verified later.

$$
(\alpha-\beta)^{2} \cos \phi \cos \psi+\frac{1}{k_{\varepsilon}^{2}}(2-2 \cos \delta) \leq\left\|P-P^{\prime}\right\|^{2}
$$

By straightforward calculation, $\square P P^{\prime} Q Q^{\prime}$ is an isosceles trapezoid and it follows from Lemma 3.1 that

$$
\begin{align*}
& \|P-Q\|^{2}=\left\|P-P^{\prime}\right\|^{2}+\left\|P-Q^{\prime}\right\|\left\|Q-P^{\prime}\right\| \\
& =\left\|P-P^{\prime}\right\|^{2} \\
& \quad+\sqrt{2(1-\cos \xi)(\cot \phi \sin \alpha \phi)^{2}} \cdot \sqrt{2(1-\cos \xi)(\cot \psi \sin \beta \psi)^{2}} \tag{3.3}\\
& =\left\|P-P^{\prime}\right\|^{2}+2(1-\cos \xi) \cot \phi \cot \psi \sin \alpha \phi \sin \beta \psi .
\end{align*}
$$

Let

$$
\begin{aligned}
M=\varrho_{\varepsilon, t}(P)=r_{\varepsilon, \phi} \circ h_{A_{\phi}}\left(P_{\alpha \phi, x}\right) & \stackrel{(3.1)}{=} r_{\varepsilon, \phi}((\sin \phi) \mathrm{e} \oplus(\alpha \cos \phi) x) \\
& \stackrel{(3.2)}{=}(\sin \phi) \mathrm{e} \oplus(\cos \phi) r_{\varepsilon}(\alpha x)
\end{aligned}
$$

and

$$
\begin{aligned}
N=\varrho_{\varepsilon, t}(Q)=r_{\varepsilon, \psi} \circ h_{A_{\psi}}\left(Q_{\beta \psi, y}\right) & \stackrel{(3.1)}{=} r_{\varepsilon, \psi}((\sin \psi) \mathrm{e} \oplus(\beta \cos \psi) y) \\
& \stackrel{(3.2)}{=}(\sin \psi) \mathrm{e} \oplus(\cos \psi) r_{\varepsilon}(\beta y) .
\end{aligned}
$$

Furthermore, let

$$
\begin{aligned}
M^{\prime} & =(\sin \psi) \mathrm{e} \oplus(\cos \psi) r_{\varepsilon}(\alpha x) \in S \cap A_{\psi}, \\
N^{\prime} & =(\sin \phi) \mathrm{e} \oplus(\cos \phi) r_{\varepsilon}(\beta y) \in S \cap A_{\phi}
\end{aligned}
$$

(see Figure $8(\mathrm{~b})$). Then $M, N^{\prime} \in S \cap A_{\phi}$ and $N, M^{\prime} \in S \cap A_{\psi}$. Again by straightforward calculation, $\square M M^{\prime} N N^{\prime}$ forms an isosceles trapezoid whose legs are $M M^{\prime}$ and $N^{\prime} N$, where

- $\left\|M-N^{\prime}\right\|=(\cos \phi)\left\|r_{\varepsilon}(\alpha x)-r_{\varepsilon}(\beta y)\right\| \leq(\cos \phi) k_{\varepsilon}\|\alpha x-\beta y\|$;
- $\left\|N-M^{\prime}\right\|=(\cos \psi)\left\|r_{\varepsilon}(\beta y)-r_{\varepsilon}(\alpha x)\right\| \leq(\cos \psi) k_{\varepsilon}\|\alpha x-\beta y\| ;$
- $\left\|M-M^{\prime}\right\|^{2}=\left\|N-N^{\prime}\right\|^{2}=(\cos \phi-\cos \psi)^{2}+(\sin \phi-\sin \psi)^{2}=2-$ $2 \cos (\psi-\phi)=2-2 \cos \delta$.
Applying Lemma 3.1 to $\square M M^{\prime} N N^{\prime}$, we have

$$
\begin{aligned}
& \left\|\varrho_{\varepsilon, t}(P)-\varrho_{\varepsilon, t}(Q)\right\|^{2}=\|M-N\|^{2} \\
& \quad=\left\|M-N^{\prime}\right\|\left\|N-M^{\prime}\right\|+\left\|M-M^{\prime}\right\|^{2} \\
& \quad \leq k_{\varepsilon}^{2} \cos \phi \cos \psi\|\alpha x-\beta y\|^{2}+2-2 \cos \delta \\
& \quad=k_{\varepsilon}^{2} \cos \phi \cos \psi\left(\alpha^{2}+\beta^{2}-2 \alpha \beta \cos \xi\right)+2-2 \cos \delta \\
& \quad=k_{\varepsilon}^{2}(\alpha-\beta)^{2} \cos \phi \cos \psi+2 k_{\varepsilon}^{2}(1-\cos \xi) \alpha \beta \cos \phi \cos \psi+2-2 \cos \delta .
\end{aligned}
$$

Combine this equation and (\star) to obtain

$$
\begin{equation*}
\left\|\varrho_{\varepsilon, t}(P)-\varrho_{\varepsilon, t}(Q)\right\|^{2} \leq k_{\varepsilon}^{2}\left\|P-P^{\prime}\right\|^{2}+2 k_{\varepsilon}^{2}(1-\cos \xi) \alpha \beta \cos \phi \cos \psi . \tag{3.4}
\end{equation*}
$$

Since $\alpha, \beta \in[0,1], 0<\phi<\psi$ and the map $z \mapsto \sin z / z$ is decreasing on $(0, \pi / 2)$, it follows that

$$
\begin{aligned}
\alpha \beta \cos \phi \cos \psi & =\frac{\alpha \phi}{\phi} \cdot \frac{\beta \psi}{\psi} \cdot \cos \phi \cos \psi \\
& \leq \frac{\sin \alpha \phi}{\sin \phi} \cdot \frac{\sin \beta \psi}{\sin \psi} \cdot \cos \phi \cos \psi=\cot \phi \cot \psi \sin \alpha \phi \sin \beta \psi
\end{aligned}
$$

Therefore, according to equations (3.3) and (3.4), it can be concluded that

$$
\begin{aligned}
& \left\|\varrho_{\varepsilon, t}(P)-\varrho_{\varepsilon, t}(Q)\right\|^{2} \\
& \quad \leq k_{\varepsilon}^{2}\left\|P-P^{\prime}\right\|+2 k_{\varepsilon}^{2}(1-\cos \xi) \cot \phi \cot \psi \sin \alpha \phi \sin \beta \psi=k_{\varepsilon}^{2}\|P-Q\|^{2} .
\end{aligned}
$$

That is, $\left.\rho_{\varepsilon, t}\right|_{U_{t}^{+}}$is k_{ε}-lipschitzian and uniformly continuous. Hence, its extension on $\overline{U_{t}^{+}}=\bigcup_{0 \leq i \leq 1} A_{i}$ must be k_{ε}-lipschitzian.

Now, let us observe that, for each $i \in[t, 0]$, the map $\left.\varrho_{\varepsilon, t}\right|_{A_{i}}$ is indeed the reflection through E of the map $\left.\varrho_{\varepsilon, t}\right|_{A_{-i}}$ where $-i \in[0,|t|] \subseteq[0,1]$. Hence, according to the above conclusion, the map $\varrho_{\varepsilon, t} \mid \bigcup_{t \leq i \leq 0} A_{i}$ must be k_{ε}-lipschitzian, also.

Finally, since $\left.\varrho_{\varepsilon, t}\right|_{C_{t} \cup L_{t}}$ are already k_{ε}-lipschitzian and

$$
\left(\bigcup_{0 \leq i \leq 1} A_{i}\right) \cup\left(\bigcup_{t \leq i \leq 0} A_{i}\right) \cup C_{t} \cup L_{t}=B
$$

is convex, it follows from Proposition 2.3 that $\left.\varrho_{\varepsilon, t}\right|_{B}=\varrho_{\varepsilon, t}$ is k_{ε}-lipschitzian. Thus its restriction on U_{t} must be k_{ε}-lipschitzian as desired.

Now, it remains to show (\star), which states as follows.

$$
(\alpha-\beta)^{2} \cos \phi \cos \psi+\frac{1}{k_{\varepsilon}^{2}}(2-2 \cos \delta) \leq\left\|P-P^{\prime}\right\|^{2}
$$

where $P=P_{\alpha \phi, x}$ and $P^{\prime}=P_{\beta \psi, x}^{\prime}$ for some $\phi, \psi \in(0, \pi / 2)$ with $\delta:=\psi-\phi>0$, $\alpha, \beta \in[0,1]$ and $x \in S \cap E$.

In order to prove (\star), let us recall that $\operatorname{span}\{\mathrm{e}, x\}$ is isometrically isomorphic to \mathbb{R}^{2}. Then, without loss of generality, let $\mathrm{e}=(0,1)$ and $x=(1,0)$. According to this representation,

$$
\begin{aligned}
& P=P_{\alpha \phi}=(\cot \phi \sin \alpha \phi, \csc \phi-\cot \phi \cos \alpha \phi), \\
& P^{\prime}=P_{\beta \psi}^{\prime}=(\cot \psi \sin \beta \psi, \csc \psi-\cot \psi \cos \beta \psi) \text {. }
\end{aligned}
$$

This form is more convenient for calculation.
Proof of (\star). Let $\tau=\beta-\alpha \in[-1,1]$. According to [8] and [2], $k_{0} \in$ $(4.5,29)$. Define $\Delta_{\phi, \psi, \tau, \beta}:[4.5,29] \rightarrow \mathbb{R}$ as follows.

$$
\Delta_{\phi, \psi, \tau, \beta}(x)=\left\|P_{\alpha \phi}-P_{\beta \psi}^{\prime}\right\|^{2}-\frac{1}{x^{2}}(2-2 \cos (\psi-\phi))-\tau^{2} \cos \phi \cos \psi
$$

Since

$$
\frac{d}{d x} \Delta_{\phi, \psi, \tau, \beta}(x)=\frac{8}{x^{3}} \sin ^{2}\left(\frac{\delta}{2}\right) \geq 0 \quad \text { for all } x \in[4.5,29]
$$

$\Delta_{\phi, \psi, \tau, \beta}$ is non-decreasing. Thus

$$
\min _{x \in[4.5,29]} \Delta_{\phi, \psi, \tau, \beta}(x)=\Delta_{\phi, \psi, \tau, \beta}(4.5) .
$$

It means that (\star) will follow if $\Delta_{\phi, \psi, \tau, \beta}(4.5) \geq 0$. Therefore, our aim is now proving the non-negativeness of $\Delta_{\phi, \psi, \tau, \beta}(4.5)$.

Let us restate $\Delta_{\phi, \psi, \tau, \beta}(4.5)$.

$$
\begin{aligned}
\Delta_{\phi, \psi, \tau, \beta}(4.5)= & \left\|P_{\alpha \phi}-P_{\beta \psi}^{\prime}\right\|^{2}-\frac{1}{4.5^{2}}(2-2 \cos (\psi-\phi))-\tau^{2} \cos \phi \cos \psi \\
= & (\csc \phi-\csc \psi)^{2}+\cot ^{2} \phi+\cot ^{2} \psi \\
& -2 \cot \phi \cot \psi \cos (\beta(\psi-\phi)+\tau \phi) \\
& +2(\csc \phi-\csc \psi)(\cot \psi \cos \beta \psi-\cot \phi \cos (\beta \phi-\tau \phi)) \\
& -\frac{8}{81}(1-\cos (\psi-\phi))-\tau^{2} \cos \phi \cos \psi
\end{aligned}
$$

where $\phi, \psi \in(0, \pi / 2)$ with $\phi<\psi, \tau \in[-1,1]$ and $\beta \in[0,1]$.
For convenience, written by $\Delta_{\phi, \psi, \tau, \beta}$ the value $\Delta_{\phi, \psi, \tau, \beta}(4.5)$. Fix τ and β, and consider the following three cases:
(1) $0<\phi<\psi \leq \pi / 4$.
(2) $\pi / 4 \leq \phi<\psi<\pi / 2$.
(3) $0<\phi<\pi / 4<\psi<\pi / 2$.

Observe that if (\star) holds for the first two cases, then so does for the last case. This is because if $0<\phi<\pi / 4<\psi<\pi / 2$, there must be a point $P_{0} \in A_{\pi / 4} \cap\left[P, P^{\prime}\right]$, where $\left[P, P^{\prime}\right]$ is the segment joining P and P^{\prime}; hence, (\star) follows from previous cases and Proposition 2.3. Furthermore, it is found by numerical optimization
that

$$
\min _{\substack{0<\phi<\psi \leq \pi / 4 \\-1 \leq \tau \leq 1 \\ 0 \leq \beta \leq 1}} \frac{\Delta_{\phi, \psi, \tau, \beta}}{\Delta_{\pi / 2-\psi, \pi / 2-\phi, \tau, \beta}} \approx 0.21016>0
$$

and that

$$
\max _{\substack{0<\phi<\psi \leq \pi / 4 \\-1 \leq \tau \leq 1 \\ 0 \leq \beta \leq 1}} \frac{\Delta_{\phi, \psi, \tau, \beta}}{\Delta_{\pi / 2-\psi, \pi / 2-\phi, \tau, \beta}} \approx 1.00000<\infty .
$$

Thus, by letting sgn: $\mathbb{R} \rightarrow\{-1,0,1\}$ be the sign function, the above relations conclude

$$
\begin{equation*}
\operatorname{sgn} \Delta_{\phi, \psi, \tau, \beta}=\operatorname{sgn} \Delta_{\pi / 2-\psi, \pi / 2-\phi, \tau, \beta} \tag{3.5}
\end{equation*}
$$

for all $\phi, \psi \in(0, \pi / 4]$ with $\phi<\psi, \tau \in[-1,1]$ and $\beta \in[0,1]$.
Let $G_{\phi, \psi, \tau, \beta}$ be the polynomial

$$
G_{\phi, \psi, \tau, \beta}=\frac{77}{81}\left(\phi^{2}+\psi^{2}\right)+\phi \psi\left(\frac{8}{81}-\tau^{2}-2 \cos \left(\frac{\pi \tau}{2}\right)\right) .
$$

Again, by numerical optimization, it is found that

$$
\min _{\substack{0<\phi<\psi \leq \pi / 4 \\-1 \leq \tau \leq 1 \\ 0 \leq \beta \leq 1}} \frac{\Delta_{\phi, \psi, \tau, \beta}}{G_{\phi, \psi, \tau, \beta}} \approx 0.12890>0 .
$$

This implies

$$
\begin{equation*}
\operatorname{sgn} \Delta_{\phi, \psi, \tau, \beta}=\operatorname{sgn} G_{\phi, \psi, \tau, \beta} \tag{3.6}
\end{equation*}
$$

for all $\phi, \psi \in(0, \pi / 4]$ with $\phi<\psi, \tau \in[-1,1]$ and $\beta \in[0,1]$. Therefore, by combining (3.5) and (3.6), it suffices to show $G_{\phi, \psi, \tau, \beta} \geq 0$.

Recall that the map

$$
x \mapsto \begin{cases}1 & \text { if } x=0 ; \\ \frac{\sin x}{x} & \text { if } x \in(0,1]\end{cases}
$$

is decreasing on $[0,1]$. Then

$$
\frac{\sin (\pi \tau / 2)}{\pi \tau / 2}=\frac{\sin (\pi|\tau| / 2)}{\pi|\tau| / 2} \geq \frac{\sin (\pi / 2)}{\pi / 2}=\frac{2}{\pi}>\frac{4}{\pi^{2}} \geq \frac{2|\tau|}{\pi(\pi|\tau| / 2)}=\frac{2 \tau}{\pi(\pi \tau / 2)}
$$

for all $\tau \in[-1,1]$. This implies that

$$
\frac{\partial}{\partial \tau} G_{\phi, \psi, \tau, \beta}=\phi \psi\left(\pi \sin \left(\frac{\pi \tau}{2}\right)-2 \tau\right) \geq 0
$$

for all $\tau \in[0,1]$, and that

$$
\frac{\partial}{\partial \tau} G_{\phi, \psi, \tau, \beta}=\phi \psi\left(\pi \sin \left(\frac{\pi \tau}{2}\right)-2 \tau\right) \leq 0
$$

for all $\tau \in[-1,0]$. With respect to $\tau, G_{\phi, \psi, \tau, \beta}$ is increasing on $[0,1]$ but decreasing on $[-1,0]$. Thus $G_{\phi, \psi, \tau, \beta}$ attains its minimum at $\tau=0$. That is,

$$
G_{\phi, \psi, \tau, \beta} \geq G_{\phi, \psi, 0, \beta}=\frac{77}{81}\left(\phi^{2}+\psi^{2}-2 \phi \psi\right)=\left(\frac{\sqrt{77}}{9}(\phi-\psi)\right)^{2} \geq 0
$$

for all $\phi, \psi \in(0, \pi / 4]$ with $\phi<\psi, \tau \in[-1,1]$ and $\beta \in[0,1]$.

References

[1] M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l_{1}, Studia. Math. 180 (2007) no. 1, 73-76.
[2] M. Baronti, E. Casini and C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory 120 (2003), 296-308.
[3] Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
[4] K. Bolibok, Minimal displacement and retraction problems in infinite-dimensional Hilbert spaces, Proc. Amer. Math. Soc. 132 (2003), 1103-1111.
[5] E. Casini and Ł. Piasecki, The minimal displacement and optimal retraction problems in some Banach spaces, J. Nonlinear Convex Anal. 18 (2017), no. 1, 61-71.
[6] P. Chaoha, K. Goebel and I. Termwuttipong, Around Ulam's question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), 215-224.
[7] P. Chaoha and J. Intrakul, Retraction from a unit ball onto its spherical cup, Linear Nonlinear Anal. 2 (2016), no. 1, 17-28.
[8] K. Goebel and W.A. Kirk, Topics in Metric FixedPpoint Theory, Cambridge University Press, London, 1990.
[9] T. Komorowski and J. Wośko, A remark on the retracting of a ball onto a sphere in an infinite dimensional Hilbert space, Math. Scand. 67 (1990), 223-226.
[10] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861-864.
[11] Ł. Piasecki, Retracting ball onto sphere in $B C_{0}(\mathbb{R})$, Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 307-314.
[12] Ł. Piasecki, Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396-399.

[^1]
[^0]: 2010 Mathematics Subject Classification. Primary: 47H09.
 Key words and phrases. Lipschitz retraction; optimal retraction; spherical cup.

[^1]: Jumpot Intrakul, Phichet Chaoha and Wacharin Wichiramala
 Department of Mathematics and Computer Science
 Faculty of Science, Chulalongkorn University
 Bangkok 10330, THAILAND
 E-mail address: intrakul.j@gmail.com phichet.c@chula.ac.th wacharin.w@chula.ac.th

