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STRICT C!-TRIANGULATIONS
IN O-MINIMAL STRUCTURES

MALGORZATA CZAPLA — WIESLAW PAWLUCKI

ABSTRACT. Inspired by the recent articles of T. Ohmoto and M. Shiota
[9], [10] on C'-triangulations of semialgebraic sets, we prove here by us-
ing different methods the following theorem: Let R be a real closed field
and let an expansion of R to an o-minimal structure be given. Then
for any closed bounded definable subset A of R™ and a finite family
Bi,..., By of definable subsets of A there exists a definable triangulation
h: |K| — A of A compatible with Bu,...,By such that K is a simplicial
complex in R"™, h is a Cl-embedding of each (open) simplex A € K and
h extends to a definable Ct-mapping defined on a definable open neigh-
borhood of |K| in R™. This improves Ohmoto—Shiota’s theorem in three
ways; firstly, h is a Cl-embedding on each simplex; secondly, the simplicial
complex K is in the same space as A and thirdly, our proof is performed for
any o-minimal structure. The possibility to have h with the first of these
properties was stated by Ohmoto and Shiota as an open problem (see [9]).

1. Introduction

Our present article is inspired by the recent results of T. Ohmoto and M. Shio-
ta [9], [10] on C'-triangulations of semialgebraic sets. We propose here a different

proof giving a stronger theorem.

Assume that R is any real closed field and an expansion of R to some o-mini-

mal structure is given. Throughout the paper we will be talking about definable
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sets and mappings referring to this o-minimal structure; for fundamental defi-
nitions and results on o-minimal structures the reader is referred to [12] or [1].
We adopt the following definitions of a simplex and a simplicial complex. Let
k,neNand k <n. A simplex of dimension k in R" is the open convex hull

k k
A= (ag, ..., a;) = {Zaiai: a; >0(1=0,...,k), 2%21}
i=0 =0

of k+1 affinely independent points a; of R™ which are called the vertices of A.
An [-dimensional face of A is any of the following simplexes A" = (a,_, ..., a,,),
where 0<vy,<...<y <k.

A simplicial complex in R™ is a finite family K of simplexes in R™ which
satisfies the following conditions:

(1) If Al, AQ € I and Al 7é Ag, then Al N AQ = 0.
(2) If A € K and A’ is a face of A, then A’ € K.

The closed bounded definable subset |K| = [JK of R" is called the polyhedron
of the symplicial complex IC.

Let A be a closed bounded subset of R". A definable C'-triangulation of A
is a pair (K, h), where K is a simplicial complex in some space R™, h: |[K| — A
is a definable homeomorphism such that for each A € K, h(A) is a definable
Cl-submanifold of R™ and h|A: A — h(A) is a Cl-diffeomorphism. When
Bi,...,B, are definable subsets of A, we say that a triangulation (IC,h) is
compatible with the sets Bi,..., B, if each of the sets h™!(B;) is a union of
some simplexes of K. A definable strict C'-triangulation is such a definable C'-
triangulation (K, h) that h: |K| — R™ is of class C; i.e. it has an extension to
a Cl-mapping defined on an open definable neighborhood of |K| in R™.

THEOREM 1.1 (Main Theorem). Let A be a closed bounded definable subset
of R™ and let By, ..., B, be a finite family of definable subsets of A. Then there
exists a definable strict C*-triangulation (IC,h) of A compatible with By, ..., B,
such that KC is a simplicial complex in R™.

This result improves a theorem of Ohmoto—Shiota [9], [10] in three ways:
firstly, h is a C'-embedding on every simplex; secondly, the simplicial complex K
is in the same space as A and thirdly, it concerns any o-minimal structure. The
possibility to have h with the first of these properties was stated by Ohmoto
and Shiota as an open problem in [9]. Our proof of Main Theorem below is
divided into two parts; in the first one we prove that there exists a definable C!-
triangulation (K, h) of A compatible with By, ..., B, such that K is a simplicial
complex in R", h: |K| — R" is Lipschitz and {h|A: A € K} is a Cl-stratification
of h with the Whitney (A) condition and in the second part this triangulation
will be improved to a strict C!-triangulation.
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In the article we adopt the convention to identify mappings with their graphs
by denoting a mapping and its graph by the same letter. If p,9: A — R are
two functions such that ¢(a) < (a) for each a € A, then (¢,) is defined as
{(a,t) e AX R:pa) <t<(a)}.

2. Proof of Main Theorem

Part I. First we will prove that there exists a definable C!-triangulation
(K, h) of A compatible with By, ..., B, such that K is a simplicial complex in R",
h: |K| — R" is Lipschitz and {h|A : A € K} is a Cl-stratification of h with the
Whitney (A) condition.

The proof is by induction on n. Without loss of generality we assume that
A is the closure of its interior A = intA. By Theorem 3.12 from [3] there exists
a definable C'-triangulation (K, f) of A compatible with Bj,..., B, such that
K is a simplicial complex in R™ and f: |K| — A is a Lipschitz mapping. By the
assumption about A, |[K| = [J{A: A € K, dim A = n}. After a linear change
of coordinates in R", we can assume that there exists a finite number of affine
functions ¢;: R"' - R (j=1,...,s), such that

U{&A cdimA=n} C O ©js
j=1

where ¢; stands for the graph of ¢; = {(z1,...,2,) € R" : , = ¢;(1,...,
Tp-1)}. Then {f|A: A€ K} is a finite definable C'-stratification of (the graph
of) f. By [6] (see also [5] or [8], or [7]) it admits a finite definable C''-refinement
S with Whitney (A) condition such that strata from S of dimension n are exactly
{f|A: A€ K, dimA = n}. There exists a corresponding C!-stratification 7~ of
|KC] which is a refinement of K such that S = {f|A: A€ T} and T contains all
open simplexes of K. Then for any pair M, N € T, such that M C N and for any
Z, € M and any definable arc a: (0,) — N (e > 0) such that }gr(l) a(t) = z,, we

have
(2.1) }ii%da(t)(ﬂN) D dy, (f| M).

Here we use the fact that the limit %g% do)(fI N) always exists due to the o-
minimality condition and the uniform boundedness of the differentials dq ) (f|V)
following from the lipschitzianity condition.

Let 7: R" 3 (21,...,%,) = (21,...,7,_1) € R""1 denote the natural pro-
jection. m(|K|) is a definable closed and bounded subset of R*~. Take p > 0
such that |¢;(y)| < p, for each y € 7(|K|) and j € {1,...,s}. By the induction
hypothesis there exists a strict C1-triangulation (£, g) of (|K|) compatible with
all the subsets m(NN), where N € T, and at the same time with all the subsets

{fye R, (y) = ¢j(y)} and {y € R"1 : g, (y) < ¢j,(y)}, where j1 # jo.
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Replacing £ by its barycentric subdivision if necessary, we can assume that

(22) A€L, pjo9<¢pjogoni
= (pj, 09)(c) < (@j, 0 g)(c), for some vertex ¢ of A.

Put ¢, = —p and @511 = p.

Similarly as in the classical proofs of triangulation (compare [12, Chapter 8]),
we built a polyhedral complex P in R"™ the polyhedron of which is |£]| x [—p, p]
and such that its projection under 7 is |£|. To this end fix any simplex A € L.
Put

{wgla"'aw{’l—i-l}:{<pjog|/1:j:03"'78+1}3

where Y1 < ... < 1/){,14_1, r = r, depending on A. Let c,,...,c be all vertices
of A. For each i € {0,...,r + 1}, define also ¥/': A — R by the the formula

k k
o ( > aycy> =Y ai(e),
v=0 v=0

k
where «,, > 0, for each v € {0,...,k}, and > «, = 1. Now we define the
v=0

polyhedral complex
P={UfAcL, i=0,...,ra+1}U{(T, PA): AL, i=0,...,ra}.

The complex is well defined because /! have continuous extensions to A and
because of (2.2) (for more detailed explanation, see Lemma 2.1 below). There
exists a unique definable homeomorphism H: |£| x [—p, p] = |L£] X [—p, p], such
that for each A € £ and i € {0,...,74 + 1}, H(u, ¥ (u)) = (u, v (u)), for
each u € A, and for each ¢ € {0,...,r4} and v € A, H is an affine iso-
morphism of the line segment [(u, ¥/ (u)), (v, ¥{},(u))] onto the line segment
[(w, M (), (u, 1 | (u))] (see Lemma 2.1). Since each of the functions ¢! has
a Cl-extension to A, according to Lemma 2.1, H is Lipschitz, C! on every poly-
hedron © € P and {H| O : © € P} is a Cl-stratification of H with the Whitney
(A) condition. By Lemma 2.2 below, all the above properties of H hold when
we replace P by a simplicial complex P* which is a barycentric subdivision of P,
and since g: |£| — 7(|K]|) is C!, the same properties are inherited by the map-
ping H := (g x idg) o H: |£] x [—p, p| = 7(IK|) % [=p, p]. Tt is clear from the
definitions that there exists a subcomplex R of P such that {ﬁ(@) : 0 e R}
is a Cl-stratification of |K| which is a refinement of K such that H is Lipschitz
and {H|6 : © € R} is a Cl-stratification of H with the Whitney (A) condi-
tion. Now the mapping G := f o H is the desired Lipschitz triangulation such
that {G|© : © € R} is a Cl-stratification of G with Whitney (A) condition (see
Lemma 2.2).
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LeMMA 2.1 (cf. [3, Lemma 3.10]). Let A = (co,...,cx) be a simplex in R™
of dimension k. Let L, be the simplicial complex of all faces of A; so |L4]| = A.
Let¢;: A — R (i = 1,2) be definable C'-functions such that 11 < 1o and

(2.3) A€ Lo, V1|A#Po|A
= there is a vertex ¢, of A such that Y1 (c,) < ¥a(cy).

Let W;: |A] = R (i = 1,2) be defined by the formula
k k
v, ( Z aucv> = Z O‘u"bi(@/)v
v=0 v=0

k
where > a, =1, oy, > 0. Consider the following polyhedral complex
v=0

P=A{U|A:Ac Ly, i=12}U{("|A,W|A): A€ Ly, Vh|A< WA}
Then there exists a unique definable homeomorphism
H:|P| = {(y,2) € Ax R:4(y) <2 <4u(y)}

such that, for each y € A and i = 1,2, H(y,%(y)) = (y,%i(y)) and H is
an affine isomorphism of the line segment [(y,¥1(y)), (y,P2(y))] onto the line
segment [(y,1¥1(y)), (y,¥2(y))]. Moreover, we have that

(a) H is Lipschitz,

(b) H is Ct-mapping on each © € P and

(c) {H|© : © € P} is a Ct-stratification of H with the Whitney (A) condi-

tion.

PROOF. It is clear that, for each A € L4,

(y,v1(y)) if (y,w) € ¥1]A
_w-tly) By —w
H(y,w) = (y’ 5y i) Y T h) - n) Wy))
if (y,w) S (W1|A,¢2|A)
(yﬂ/}2(y)) if (y, ’lU) S WQ|A

Notice that H is a well-defined bijection due to (2.3), which implies that ¥; < 1
on A if and only if ¥, < ¥, on A, otherwise ¥1 = 15 on A and ¥, = ¥, on A. To
prove (a), (b) and (c), first observe that using the following C!-diffeomorphism

AXR3 (y,w) — (y,w—11(y)) € AxR

we can assume without any loss of generality that ¢ = ¥; = 0. Of course, we
can assume that ¢ := 9 > 0 and ¥ := ¥, > 0 on A. The condition (b) is clearly
fulfilled. Put IT = (0|A,¥|A) and H(y,w) = (y, H*(y,w)). In order to prove (a)
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it suffices to show that all first-order partial derivatives of H* are bounded on II.

Since
OH* W 9w Yy oF
@4 dy; (v,w) = U(y) Oy, ) U(y) ¥(y) Oy; ),
oOH” _Y(y)
aw (yaw> - M7

it is enough to show that 1) /¥ is bounded on A. This is clear if (¢, ) = ¥(¢,) > 0,
for all v, so assume that {c,,...,¢;} = {c, : ¥(c,) = 0}, where 0 < I < k.
By an affine change of coordinates one can assume that ¢, = 0 and ¢, (v =
1,...,k) are vectors of the canonical basis. Let y = (y1,...,yx) € II. Put
u=(y1,...,4,0,...,0). We have

k
MYy

‘w(w ‘ _ ‘w(w Y| _ = M

U(y)| U (y) -k ~ min{¢Y(c,) :v=1+1,...,k}’
Z Yo (cv)
v=Il+1

where M is the upper bound for the absolute value of the first-order partial
derivatives of 1. In order to check (c), first observe that H is a C'-diffeomorphism
of {(y,w) € |P|:¥(y) > 0} onto {(y,2) € Ax R:0 <2 <9(y), ¥(y) > 0}.
Therefore, without any loss of generality, it suffices to check the Whitney (A)
condition for IT and

Oc{(y,w) eEAxR:¥(y)=0=w}={(y,w) €A x R:9Y(y) =0=w}

= conv{co, ..., } x {0}.

Hence, without any loss of generality, one can assume that © = (c,, ..., c,) x {0},
where p <. Fix any (a,0) € 6. By (2.4), since ¢ and ¥ are C', we have
OH*
a—(y,w) —0, forj=1,...,p, when I 5 (y,w) — (a,0).
Yj
This ends the proof of (¢) and of Lemma 2.1. O

The next lemma is a particular case of the general fact that the Whitney (A)

condition is preserved in a transversal intersection (see [2]).

LEMMA 2.2. Let H: A — R™ be a definable Lipschitz mapping defined on
a closed subset A € R"™. Let S be a definable finite C-stratification of A such that
H|M is C* for each M € S and {H|M : M € S} is a C-stratification of H with
the Whitney (A) condition. Let T be a definable finite C'-stratification of A with
the Whitney (A) condition which is a refinement of S. Then {H|N : N € T} is
a Ct-stratification of H with the Whitney (A) condition.

ProOF. It follows from the Lipschitz condition that the differentials of H|M
are uniformly bounded. Hence the proof is immediate. O
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Part II. Let (K, f) be a definable C!-triangulation of A compatible with
By, ..., B, such that K is a simplicial complex in R",

(2.5) f:|K| = R™ is Lipschitz
and
(2.6) {f|A:A€K} isaC'-stratification with the Whitney (A) condition.

Now we will improve f to get a strict C'-triangulation of A. To this end we will
modify f in some tubular neighborhoods of simplexes.

Fix any simplex I' € K of dimension p < n. Without loss of generality we
can assume that 0 € I'and I' C RP = {(z1,...,2p) € R" 1 Xpy1 = ... = Ty =
0}. Let R" P = {(#1,...,2,) € R" : 21 = ... = x, = 0}. There are affine
functionals p;: R — R (j =0,...,p) such that I' = {u € RP : pj(u) >0, j =
0,...,p}.

Consider the star St(I,K) of I' in K; ie. St(I[,K) = {A € K : I' is a face
of A}. Then 2 :=|J{A € St(I,K)} is an open neighborhood of I" in |K|. There
exists a > 0 such that, for each u € I,

dist(u, 962) > amin p;(u).
J

Put w(u) := p3(u) - ... - p2(u), for each u € I'. There exists € > 0 such that, for
each u € I',
(2.7 2ew(u) < aminp;(u) < dist(u, 02).

J

Then G := {(u,v) € |K|:u €I, v € R" P, |v] < ew(u)} is a neighborhood of
I' in |K]| contained in {2 due to (2.7).

Let ¢: [0,4+00) — [0,+00) be a definable C!-function such that ¢(0) =
©'(0) =0, p(t) =1, for t > 1, and ¢'(t) > 0, for t € (0,1). Now we define
g: I'x R"P — I" x R*P by the formula

o= eo{h))

Then g(G) = G and g is the identity outside G. Besides, g is a C*-diffeomorphism
of I' x R" P\ I' onto I' x R" P\ I', because its inverse on I' x R* P\ I is

o= o () 2)

where : (0,4+00) — (0,+00) is a C!-diffeomorphism defined by the formula
P(t) = p(t)t.

Furthermore, g is C! on I' x R"P, because for any j € {1,...,n — p}

09 w0ty () (b))
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where e; = (0,...,(1),...,0). It follows that (9g/0v;)(u,v) — (0,0), when
j

(u,v) = (uo,0) € I'. Similarly, (9g/0u;)(u,v)— (e;,0), when (u,v)— (ug,0) € T
Now we define h: |K| — |K| by putting h(z) = g(z), for each z € G, and

h(z) =z on |K|\ G. It is clear that h is a homeomorphism of |K| onto |K| and

a C!-diffeomorphism of each simplex A € K onto itself. It follows from (2.8) and

the boundedness of first-order partial derivatives of f|A (due to (2.5)) that

d(f|Aoh)
0z

where A € St(I,K) \ {I'} and z is any nonzero vector from the intersection of

(2.9) (u,v) — (0,0), when (u,v) — (u,,0) € I,

the linear subspace L generated by A with R®""P. On the other hand we have
for any ¢ € {1,...,p} and (u,v) € GN A

any PUUR), U, (Y,

Ou; ou; ew(u

A o)) ()

where z1,..., 2, is an orthogonal basis of L N R"~? and v, are coefficients of v

with respect to this basis. It follows from (2.6) and from flatness of w on OI'
that

o(f14)

M(u,v) — s (u,0),

(2.11) o0

when A 3 (u,v) — (u,,0) € A, for any simplex A € K contained in I" and any
unit vector p parallel to A. This has two consequences. Firstly, all first-order
partial derivatives of f|A o h have finite limits when approaching I" (see (2.9)
and (2.11)). Secondly, the new triangulation f o h satisfies the condition (2.6)
at faces A of I' where it may fail to be Cl-extendable. But such A are of
dimension less then p = dim I', and our procedure works by decreasing induction
onp=dim/I.

Consequently, after finite number of steps, we obtain a definable C!-triangu-
lation f: |[IC| = R™ of A which has all first-order partial derivatives continuous
on |K|. Hence, by a definable version of Whitney’s extension theorem (see [4]

r [11]), f can be extended to a definable C'-mapping defined on the whole
space R".
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