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STRICT C1-TRIANGULATIONS

IN O-MINIMAL STRUCTURES

Ma lgorzata Czapla — Wies law Paw lucki

Abstract. Inspired by the recent articles of T. Ohmoto and M. Shiota

[9], [10] on C1-triangulations of semialgebraic sets, we prove here by us-

ing different methods the following theorem: Let R be a real closed field
and let an expansion of R to an o-minimal structure be given. Then

for any closed bounded definable subset A of Rn and a finite family

B1, . . . , Br of definable subsets of A there exists a definable triangulation
h : |K| → A of A compatible with B1, . . . , Br such that K is a simplicial

complex in Rn, h is a C1-embedding of each (open) simplex ∆ ∈ K and

h extends to a definable C1-mapping defined on a definable open neigh-
borhood of |K| in Rn. This improves Ohmoto–Shiota’s theorem in three

ways; firstly, h is a C1-embedding on each simplex; secondly, the simplicial

complex K is in the same space as A and thirdly, our proof is performed for
any o-minimal structure. The possibility to have h with the first of these

properties was stated by Ohmoto and Shiota as an open problem (see [9]).

1. Introduction

Our present article is inspired by the recent results of T. Ohmoto and M. Shio-

ta [9], [10] on C1-triangulations of semialgebraic sets. We propose here a different

proof giving a stronger theorem.

Assume that R is any real closed field and an expansion of R to some o-mini-

mal structure is given. Throughout the paper we will be talking about definable
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sets and mappings referring to this o-minimal structure; for fundamental defi-

nitions and results on o-minimal structures the reader is referred to [12] or [1].

We adopt the following definitions of a simplex and a simplicial complex. Let

k, n ∈ N and k ≤ n. A simplex of dimension k in Rn is the open convex hull

∆ = (a0, . . . , ak) =

{
k∑
i=0

αiai : αi > 0 (i = 0, . . . , k),

k∑
i=0

αi = 1

}
of k+ 1 affinely independent points ai of Rn which are called the vertices of ∆.

An l-dimensional face of ∆ is any of the following simplexes ∆′ = (aνo , . . . , aνl),

where 0 ≤ νo < . . . < νl ≤ k.

A simplicial complex in Rn is a finite family K of simplexes in Rn which

satisfies the following conditions:

(1) If ∆1, ∆2 ∈ K and ∆1 6= ∆2, then ∆1 ∩∆2 = ∅.
(2) If ∆ ∈ K and ∆′ is a face of ∆, then ∆′ ∈ K.

The closed bounded definable subset |K| =
⋃
K of Rn is called the polyhedron

of the symplicial complex K.

Let A be a closed bounded subset of Rn. A definable C1-triangulation of A

is a pair (K, h), where K is a simplicial complex in some space Rm, h : |K| → A

is a definable homeomorphism such that for each ∆ ∈ K, h(∆) is a definable

C1-submanifold of Rn and h|∆ : ∆ → h(∆) is a C1-diffeomorphism. When

B1, . . . , Br are definable subsets of A, we say that a triangulation (K, h) is

compatible with the sets B1, . . . , Br if each of the sets h−1(Bj) is a union of

some simplexes of K. A definable strict C1-triangulation is such a definable C1-

triangulation (K, h) that h : |K| → Rn is of class C1; i.e. it has an extension to

a C1-mapping defined on an open definable neighborhood of |K| in Rm.

Theorem 1.1 (Main Theorem). Let A be a closed bounded definable subset

of Rn and let B1, . . . , Br be a finite family of definable subsets of A. Then there

exists a definable strict C1-triangulation (K, h) of A compatible with B1, . . . , Br
such that K is a simplicial complex in Rn.

This result improves a theorem of Ohmoto–Shiota [9], [10] in three ways:

firstly, h is a C1-embedding on every simplex; secondly, the simplicial complex K
is in the same space as A and thirdly, it concerns any o-minimal structure. The

possibility to have h with the first of these properties was stated by Ohmoto

and Shiota as an open problem in [9]. Our proof of Main Theorem below is

divided into two parts; in the first one we prove that there exists a definable C1-

triangulation (K, h) of A compatible with B1, . . . , Br such that K is a simplicial

complex in Rn, h : |K| → Rn is Lipschitz and {h|∆ : ∆ ∈ K} is a C1-stratification

of h with the Whitney (A) condition and in the second part this triangulation

will be improved to a strict C1-triangulation.
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In the article we adopt the convention to identify mappings with their graphs

by denoting a mapping and its graph by the same letter. If ϕ,ψ : A → R are

two functions such that ϕ(a) < ψ(a) for each a ∈ A, then (ϕ,ψ) is defined as

{(a, t) ∈ A×R : ϕ(a) < t < ψ(a)}.

2. Proof of Main Theorem

Part I. First we will prove that there exists a definable C1-triangulation

(K, h) of A compatible with B1, . . . , Br such that K is a simplicial complex in Rn,

h : |K| → Rn is Lipschitz and {h|∆ : ∆ ∈ K} is a C1-stratification of h with the

Whitney (A) condition.

The proof is by induction on n. Without loss of generality we assume that

A is the closure of its interior A = intA. By Theorem 3.12 from [3] there exists

a definable C1-triangulation (K, f) of A compatible with B1, . . . , Br such that

K is a simplicial complex in Rn and f : |K| → A is a Lipschitz mapping. By the

assumption about A, |K| =
⋃
{∆ : ∆ ∈ K, dim∆ = n}. After a linear change

of coordinates in Rn, we can assume that there exists a finite number of affine

functions ϕj : Rn−1 → R (j = 1, . . . , s), such that⋃
{∂∆ : dim∆ = n} ⊂

s⋃
j=1

ϕj ,

where ϕj stands for the graph of ϕj = {(x1, . . . , xn) ∈ Rn : xn = ϕj(x1, . . . ,

xn−1)}. Then {f |∆ : ∆ ∈ K} is a finite definable C1-stratification of (the graph

of) f . By [6] (see also [5] or [8], or [7]) it admits a finite definable C1-refinement

S with Whitney (A) condition such that strata from S of dimension n are exactly

{f |∆ : ∆ ∈ K, dim∆ = n}. There exists a corresponding C1-stratification T of

|K| which is a refinement of K such that S = {f |Λ : Λ ∈ T } and T contains all

open simplexes of K. Then for any pair M,N ∈ T , such that M ⊂ N and for any

xo ∈M and any definable arc α : (0, ε)→ N (ε > 0) such that lim
t→0

α(t) = xo, we

have

(2.1) lim
t→0

dα(t)(f |N) ⊃ dxo
(f |M).

Here we use the fact that the limit lim
t→0

dα(t)(f |N) always exists due to the o-

minimality condition and the uniform boundedness of the differentials dα(t)(f |N)

following from the lipschitzianity condition.

Let π : Rn 3 (x1, . . . , xn) 7→ (x1, . . . , xn−1) ∈ Rn−1 denote the natural pro-

jection. π(|K|) is a definable closed and bounded subset of Rn−1. Take ρ > 0

such that |ϕj(y)| < ρ, for each y ∈ π(|K|) and j ∈ {1, . . . , s}. By the induction

hypothesis there exists a strict C1-triangulation (L, g) of π(|K|) compatible with

all the subsets π(N), where N ∈ T , and at the same time with all the subsets

{y ∈ Rn−1 : ϕj1(y) = ϕj2(y)} and {y ∈ Rn−1 : ϕj1(y) < ϕj2(y)}, where j1 6= j2.
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Replacing L by its barycentric subdivision if necessary, we can assume that

(2.2) Λ ∈ L, ϕj1 ◦ g < ϕj2 ◦ g on Λ

⇒ (ϕj1 ◦ g)(c) < (ϕj2 ◦ g)(c), for some vertex c of Λ.

Put ϕo ≡ −ρ and ϕs+1 ≡ ρ.

Similarly as in the classical proofs of triangulation (compare [12, Chapter 8]),

we built a polyhedral complex P in Rn the polyhedron of which is |L| × [−ρ, ρ]

and such that its projection under π is |L|. To this end fix any simplex Λ ∈ L.

Put

{ψΛo , . . . , ψΛr+1} = {ϕj ◦ g|Λ : j = 0, . . . , s+ 1},

where ψΛo < . . . < ψΛr+1, r = rΛ depending on Λ. Let co, . . . , ck be all vertices

of Λ. For each i ∈ {0, . . . , r + 1}, define also ΨΛi : Λ→ R by the the formula

ΨΛi

( k∑
ν=0

ανcν

)
:=

k∑
ν=0

ανψ
Λ
i (cν),

where αν > 0, for each ν ∈ {0, . . . , k}, and
k∑
ν=0

αν = 1. Now we define the

polyhedral complex

P :=
{
ΨΛi : Λ ∈ L, i = 0, . . . , rΛ + 1

}
∪
{

(ΨΛi , Ψ
Λ
i+1) : Λ ∈ L, i = 0, . . . , rΛ}.

The complex is well defined because ψΛi have continuous extensions to Λ and

because of (2.2) (for more detailed explanation, see Lemma 2.1 below). There

exists a unique definable homeomorphism H : |L| × [−ρ, ρ]→ |L| × [−ρ, ρ], such

that for each Λ ∈ L and i ∈ {0, . . . , rΛ + 1}, H(u, ΨΛi (u)) = (u, ψΛi (u)), for

each u ∈ Λ, and for each i ∈ {0, . . . , rΛ} and u ∈ Λ, H is an affine iso-

morphism of the line segment [(u, ΨΛi (u)), (u, ΨΛi+1(u))] onto the line segment

[(u, ψΛi (u)), (u, ψΛi+1(u))] (see Lemma 2.1). Since each of the functions ψΛi has

a C1-extension to Λ, according to Lemma 2.1, H is Lipschitz, C1 on every poly-

hedron Θ ∈ P and {H|Θ : Θ ∈ P} is a C1-stratification of H with the Whitney

(A) condition. By Lemma 2.2 below, all the above properties of H hold when

we replace P by a simplicial complex P∗ which is a barycentric subdivision of P,

and since g : |L| → π(|K|) is C1, the same properties are inherited by the map-

ping H̃ := (g × idR) ◦ H : |L| × [−ρ, ρ] → π(|K|) × [−ρ, ρ]. It is clear from the

definitions that there exists a subcomplex R of P such that {H̃(Θ) : Θ ∈ R}
is a C1-stratification of |K| which is a refinement of K such that H̃ is Lipschitz

and {H̃|Θ : Θ ∈ R} is a C1-stratification of H̃ with the Whitney (A) condi-

tion. Now the mapping G := f ◦ H̃ is the desired Lipschitz triangulation such

that {G|Θ : Θ ∈ R} is a C1-stratification of G with Whitney (A) condition (see

Lemma 2.2).
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Lemma 2.1 (cf. [3, Lemma 3.10]). Let Λ = (co, . . . , ck) be a simplex in Rn

of dimension k. Let LΛ be the simplicial complex of all faces of Λ; so |LΛ| = Λ.

Let ψi : Λ→ R (i = 1, 2) be definable C1-functions such that ψ1 ≤ ψ2 and

(2.3) ∆ ∈ LΛ, ψ1|∆ 6≡ ψ2|∆

⇒ there is a vertex cν of ∆ such that ψ1(cν) < ψ2(cν).

Let Ψi : |Λ| → R (i = 1, 2) be defined by the formula

Ψi

( k∑
ν=0

ανcν

)
=

k∑
ν=0

ανψi(cν),

where
k∑
ν=0

αν = 1, αν ≥ 0. Consider the following polyhedral complex

P =
{
Ψi|∆ : ∆ ∈ LΛ, i = 1, 2

}
∪
{

(Ψ1|∆,Ψ2|∆) : ∆ ∈ LΛ, Ψ1|∆ < Ψ2|∆
}
.

Then there exists a unique definable homeomorphism

H : |P| → {(y, z) ∈ Λ×R : ψ1(y) ≤ z ≤ ψ2(y)}

such that, for each y ∈ Λ and i = 1, 2, H(y, Ψi(y)) = (y, ψi(y)) and H is

an affine isomorphism of the line segment [(y, Ψ1(y)), (y, Ψ2(y))] onto the line

segment [(y, ψ1(y)), (y, ψ2(y))]. Moreover, we have that

(a) H is Lipschitz,

(b) H is C1-mapping on each Θ ∈ P and

(c) {H|Θ : Θ ∈ P} is a C1-stratification of H with the Whitney (A) condi-

tion.

Proof. It is clear that, for each ∆ ∈ LΛ,

H(y, w) =



(y, ψ1(y)) if (y, w) ∈ Ψ1|∆(
y,

w − Ψ1(y)

Ψ2(y)− Ψ1(y)
ψ2(y) +

Ψ2(y)− w
Ψ2(y)− Ψ1(y)

ψ1(y)

)
if (y, w) ∈ (Ψ1|∆,Ψ2|∆)

(y, ψ2(y)) if (y, w) ∈ Ψ2|∆.

Notice that H is a well-defined bijection due to (2.3), which implies that ψ1 < ψ2

on ∆ if and only if Ψ1 < Ψ2 on ∆, otherwise ψ1 ≡ ψ2 on ∆ and Ψ1 ≡ Ψ2 on ∆. To

prove (a), (b) and (c), first observe that using the following C1-diffeomorphism

Λ×R 3 (y, w) 7→ (y, w − ψ1(y)) ∈ Λ×R

we can assume without any loss of generality that ψ1 ≡ Ψ1 ≡ 0. Of course, we

can assume that ψ := ψ2 > 0 and Ψ := Ψ2 > 0 on Λ. The condition (b) is clearly

fulfilled. Put Π = (0|Λ, Ψ |Λ) and H(y, w) = (y,H∗(y, w)). In order to prove (a)
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it suffices to show that all first-order partial derivatives of H∗ are bounded on Π.

Since

∂H∗

∂yj
(y, w) =

w

Ψ(y)
· ∂ψ
∂yj

(y)− w

Ψ(y)
· ψ(y)

Ψ(y)
· ∂Ψ
∂yj

(y),(2.4)

∂H∗

∂w
(y, w) =

ψ(y)

Ψ(y)
,

it is enough to show that ψ/Ψ is bounded on Λ. This is clear if ψ(cν) = Ψ(cν) > 0,

for all ν, so assume that {co, . . . , cl} = {cν : ψ(cν) = 0}, where 0 ≤ l < k.

By an affine change of coordinates one can assume that co = 0 and cν (ν =

1, . . . , k) are vectors of the canonical basis. Let y = (y1, . . . , yk) ∈ Π. Put

u = (y1, . . . , yl, 0, . . . , 0). We have

∣∣∣∣ψ(y)

Ψ(y)

∣∣∣∣ =

∣∣∣∣ψ(y)− ψ(u)

Ψ(y)

∣∣∣∣ ≤
M

k∑
ν=l+1

yν

k∑
ν=l+1

yνψ(cν)

≤ M

min{ψ(cν) : ν = l + 1, . . . , k}
,

where M is the upper bound for the absolute value of the first-order partial

derivatives of ψ. In order to check (c), first observe that H is a C1-diffeomorphism

of {(y, w) ∈ |P| : Ψ(y) > 0} onto {(y, z) ∈ Λ × R : 0 ≤ z ≤ ψ(y), ψ(y) > 0}.
Therefore, without any loss of generality, it suffices to check the Whitney (A)

condition for Π and

Θ ⊂ {(y, w) ∈ Λ×R : Ψ(y) = 0 = w} = {(y, w) ∈ Λ×R : ψ(y) = 0 = w}

= conv{co, . . . , cl} × {0}.

Hence, without any loss of generality, one can assume that Θ = (co, . . . , cp)×{0},
where p ≤ l. Fix any (a, 0) ∈ Θ. By (2.4), since ψ and Ψ are C1, we have

∂H∗

∂yj
(y, w)→ 0, for j = 1, . . . , p, when Π 3 (y, w)→ (a, 0).

This ends the proof of (c) and of Lemma 2.1. �

The next lemma is a particular case of the general fact that the Whitney (A)

condition is preserved in a transversal intersection (see [2]).

Lemma 2.2. Let H : A → Rm be a definable Lipschitz mapping defined on

a closed subset A ∈ Rn. Let S be a definable finite C1-stratification of A such that

H|M is C1 for each M ∈ S and {H|M : M ∈ S} is a C1-stratification of H with

the Whitney (A) condition. Let T be a definable finite C1-stratification of A with

the Whitney (A) condition which is a refinement of S. Then {H|N : N ∈ T } is

a C1-stratification of H with the Whitney (A) condition.

Proof. It follows from the Lipschitz condition that the differentials of H|M
are uniformly bounded. Hence the proof is immediate. �
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Part II. Let (K, f) be a definable C1-triangulation of A compatible with

B1, . . . , Br such that K is a simplicial complex in Rn,

(2.5) f : |K| → Rn is Lipschitz

and

(2.6) {f |∆ : ∆ ∈ K} is a C1-stratification with the Whitney (A) condition.

Now we will improve f to get a strict C1-triangulation of A. To this end we will

modify f in some tubular neighborhoods of simplexes.

Fix any simplex Γ ∈ K of dimension p < n. Without loss of generality we

can assume that 0 ∈ Γ and Γ ⊂ Rp = {(x1, . . . , xn) ∈ Rn : xp+1 = . . . = xn =

0}. Let Rn−p = {(x1, . . . , xn) ∈ Rn : x1 = . . . = xp = 0}. There are affine

functionals ρj : Rp → R (j = 0, . . . , p) such that Γ = {u ∈ Rp : ρj(u) > 0, j =

0, . . . , p}.
Consider the star St(Γ,K) of Γ in K; i.e. St(Γ,K) = {Λ ∈ K : Γ is a face

of Λ}. Then Ω :=
⋃
{Λ ∈ St(Γ,K)} is an open neighborhood of Γ in |K|. There

exists α > 0 such that, for each u ∈ Γ ,

dist(u, ∂Ω) > αmin
j
ρj(u).

Put ω(u) := ρ2o(u) · . . . · ρ2p(u), for each u ∈ Γ . There exists ε > 0 such that, for

each u ∈ Γ ,

(2.7) 2 εω(u) ≤ αmin
j
ρj(u) < dist(u, ∂Ω).

Then G := {(u, v) ∈ |K| : u ∈ Γ, v ∈ Rn−p, |v| ≤ εω(u)} is a neighborhood of

Γ in |K| contained in Ω due to (2.7).

Let ϕ : [0,+∞) → [0,+∞) be a definable C1-function such that ϕ(0) =

ϕ′(0) = 0, ϕ(t) = 1, for t ≥ 1, and ϕ′(t) > 0, for t ∈ (0, 1). Now we define

g : Γ ×Rn−p → Γ ×Rn−p by the formula

g(u, v) :=

(
u, ϕ

(
|v|

εω(u)

)
v

)
.

Then g(G) = G and g is the identity outside G. Besides, g is a C1-diffeomorphism

of Γ ×Rn−p \ Γ onto Γ ×Rn−p \ Γ , because its inverse on Γ ×Rn−p \ Γ is

g−1(u,w) =

(
u, εω(u)ψ−1

(
|w|
εω(u)

)
w

|w|

)
,

where ψ : (0,+∞) → (0,+∞) is a C1-diffeomorphism defined by the formula

ψ(t) := ϕ(t)t.

Furthermore, g is C1 on Γ ×Rn−p, because for any j ∈ {1, . . . , n− p}

(2.8)
∂g

∂vj
(u, v) =

(
0,
vj
|v|
· 1

εω(u)
· ϕ′
(
|v|

εω(u)

)
v + ϕ

(
|v|

εω(u)

)
ej

)
,
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where ej = (0, . . . , 1
(j)
, . . . , 0). It follows that (∂g/∂vj)(u, v) → (0, 0), when

(u, v)→(uo, 0) ∈ Γ . Similarly, (∂g/∂ui)(u, v)→(ei, 0), when (u, v)→(u0, 0) ∈ Γ.

Now we define h : |K| → |K| by putting h(x) = g(x), for each x ∈ G, and

h(x) = x on |K| \G. It is clear that h is a homeomorphism of |K| onto |K| and

a C1-diffeomorphism of each simplex Λ ∈ K onto itself. It follows from (2.8) and

the boundedness of first-order partial derivatives of f |Λ (due to (2.5)) that

(2.9)
∂(f |Λ ◦ h)

∂z
(u, v)→ (0, 0), when (u, v)→ (uo, 0) ∈ Γ,

where Λ ∈ St(Γ,K) \ {Γ} and z is any nonzero vector from the intersection of

the linear subspace L generated by Λ with Rn−p. On the other hand we have

for any i ∈ {1, . . . , p} and (u, v) ∈ G ∩ Λ

(2.10)
∂(f |Λ ◦ h)

∂ui
(u, v) =

∂(f |Λ)

∂ui

(
u, ϕ

(
|v|

εω(u)

)
v

)
+

q∑
ν=1

∂(f |Λ)

∂zν

(
u, ϕ

(
|v|

εω(u)

)
v

)
(−1)

∂ω

∂ui
(u)

|v|
εω2(u)

ϕ′
(
|v|

εω(u)

)
vν ,

where z1, . . . , zq is an orthogonal basis of L ∩ Rn−p and vν are coefficients of v

with respect to this basis. It follows from (2.6) and from flatness of ω on ∂Γ

that

(2.11)
∂(f |Λ ◦ h)

∂µ
(u, v)→ ∂(f |∆)

∂µ
(u, 0),

when Λ 3 (u, v) → (uo, 0) ∈ ∆, for any simplex ∆ ∈ K contained in Γ and any

unit vector µ parallel to ∆. This has two consequences. Firstly, all first-order

partial derivatives of f |Λ ◦ h have finite limits when approaching Γ (see (2.9)

and (2.11)). Secondly, the new triangulation f ◦ h satisfies the condition (2.6)

at faces ∆ of Γ where it may fail to be C1-extendable. But such ∆ are of

dimension less then p = dimΓ , and our procedure works by decreasing induction

on p = dimΓ .

Consequently, after finite number of steps, we obtain a definable C1-triangu-

lation f : |K| → Rn of A which has all first-order partial derivatives continuous

on |K|. Hence, by a definable version of Whitney’s extension theorem (see [4]

or [11]), f can be extended to a definable C1-mapping defined on the whole

space Rn.
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