Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 739–747 DOI: 10.12775/TMNA.2018.033

© 2018 Juliusz Schauder Centre for Nonlinear Studies

STRICT C^1 -TRIANGULATIONS IN O-MINIMAL STRUCTURES

Małgorzata Czapla — Wiesław Pawłucki

ABSTRACT. Inspired by the recent articles of T. Ohmoto and M. Shiota [9], [10] on \mathcal{C}^1 -triangulations of semialgebraic sets, we prove here by using different methods the following theorem: Let R be a real closed field and let an expansion of R to an o-minimal structure be given. Then for any closed bounded definable subset A of R^n and a finite family B_1, \ldots, B_r of definable subsets of A there exists a definable triangulation $h: |\mathcal{K}| \to A$ of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in R^n , h is a C^1 -embedding of each (open) simplex $\Delta \in \mathcal{K}$ and h extends to a definable C^1 -mapping defined on a definable open neighborhood of $|\mathcal{K}|$ in R^n . This improves Ohmoto-Shiota's theorem in three ways; firstly, h is a C^1 -embedding on each simplex; secondly, the simplicial complex \mathcal{K} is in the same space as A and thirdly, our proof is performed for any o-minimal structure. The possibility to have h with the first of these properties was stated by Ohmoto and Shiota as an open problem (see [9]).

1. Introduction

Our present article is inspired by the recent results of T. Ohmoto and M. Shiota [9], [10] on \mathcal{C}^1 -triangulations of semialgebraic sets. We propose here a different proof giving a stronger theorem.

Assume that R is any real closed field and an expansion of R to some o-minimal structure is given. Throughout the paper we will be talking about definable

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary: 32B25; Secondary: 14P10, 03C64, 32B20.

Key words and phrases. Triangulation; \mathcal{C}^1 -mapping; o-minimal structure.