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GLOBAL EXISTENCE
OF A DIFFUSION LIMIT WITH DAMPING
FOR THE COMPRESSIBLE RADIATIVE EULER SYSTEM
COUPLED TO AN ELECTROMAGNETIC FIELD
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Dedicated to the memory of Professor Marek Burnat

ABSTRACT. We study the Cauchy problem for a system of equations cor-
responding to a singular limit of radiative hydrodynamics, namely the 3D
radiative compressible Euler system coupled to an electromagnetic field
through the MHD approximation. Assuming the presence of damping to-
gether with suitable smallness hypotheses for the data, we prove that this
problem admits a unique global smooth solution.

1. Introduction

In [4], following the study of Buet and Després [5] we considered a singular
limit for a compressible inviscid radiative flow. The motion of the fluid was
governed by the Euler system with damping for the evolution of the density
0 = o(t,x), the velocity field U = ﬁ(t,x), and the absolute temperature ¥ =
9(t,x) as functions of the time ¢ and the Eulerian spatial coordinate z € R3.
A damping term was added to the momentum equation. We proved that the
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associated Cauchy problem admits a unique global smooth solution, provided
that the data are small enough.

In the present work we study the coupling of the previous model with an
electromagnetic field through the so-called magnetohydrodynamic approxima-
tion (MHD) [3].

Let us recall briefly that Maxwell’s electromagnetic theory relies on the
Ampere-Maxwell equation and Faraday’s law. The first one reads

(1.1) 8D + J = cul, H

where B = eﬁ is the electric induction and ﬁ is the magnetic field. The second
one reads

(1.2) 8153 + curlmﬁ =0,

where § = uﬁ is the magnetic induction. Here, the constant g > 0 stands for
the permeability of free space.
The two last laws are Coulomb’s law

(1.3) div, D = q,
where ¢ is the electric charge density, and Gauss’s law
(1.4) div, B = 0.

We assume that the electric current density 7 is related to the electric field ﬁ
and the macroscopic fluid velocity U via Ohm’s law

(1.5) T =0+ xB),

where o is the electrical conductivity of the fluid.
The magnetic force acting on the fluid (Lorentz’s force) ?m and the magnetic
energy supply FE,, are given by

(1.6) Fn=JxB, En=7J-FE.

The MHD approximation consists in neglecting the displacement current 8tB
(for the electric induction given by D= eﬁ) in Ampere-Maxwell equation (1.1)
and supposing that the charge ¢ is negligible, so we obtain

(1.7) u7 = curlmﬁ, >0,

where, as mentioned above, the constant u is the permeability of free space.
Moreover, using (1.5), equation (1.2) can be written [6] in the form

(1.8) 8t§ + curll.(§ X ) + curly (A curlxg) =0,

where A\ = (uo)~! is the magnetic diffusivity of the fluid.
Finally, from Faraday’s law we get

(1.9) 8t<21u §|2> +7.E>:divx<; E’xﬁ).
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Concerning radiation, we consider the non equilibrium diffusion regime where
radiation appears through an extra equation of parabolic type for the radiative
temperature which is a priori different from the fluid temperature.

More specifically the system of equations to be studied for the five unknowns
(9,7,19713), ﬁ) reads

(1.10) Ao+ div. (o) =0,
(1.11)  9,(oW) + diva (oW @ W) + Valp + pr) + iﬁ xcwrl, B 4+ v =0,
(1.12)  Oi(oFE) + div,((oF —&—p)ﬁ) + U - Vap, + %(7 X g) . curlxg

= divy(kV,0) — o(ad* — E,) + % lewrl, B|,
1

(1.13) OB, + dive(E, W) + prdiv, @ = div, (3 VIET) — 0a(E, — at?),

S

(1.14) 8t§ + curl, (§ X 7) + curl, (/\ curly g) =0,

where B is a divergence-free vector field, E = | |2/2+¢(o,9), E, is the radiative
energy related to the radiation temperature T, by E, = aT? and p, is the
radiative pressure given by p, = aT/3 = E,/3, with a > 0. We have also
supposed for simplicity that u, o,, 05, 0 and a are positive constants. This
implies in particular that

curl, <1 curl,, (1 §>> = ,i A?.
o 1 ou

Extending the analysis of [4] and using stability arguments introduced by Beau-
chard and Zuazua in [1], our goal is to prove the global existence of solutions for
the system (1.10)—(1.14) when data are sufficiently close to an equilibrium state.

The plan of the paper is as follows: in Section 2 we state our main result
(Theorem 2.1) then, in Section 3, we study the MHD model and prove Theo-
rem 2.1.

2. Main result

Hypotheses imposed on the constitutive relations are motivated by the gen-
eral existence theory for the Euler—Fourier system developed in [20], [21]. Hy-
potheses on the transport coefficients are physically relevant for the radiative
part [17], [19]. We impose that the pressure p(g,¥) > 0, the internal energy
e(0,9) > 0 and the specific entropy s(p, ) are smooth functions of their argu-
ments. Moreover, we impose the following monotony assumptions:

dp de
%(@719) > Oa %

for all ¥ > 0 and all o > 0.

(2.1) (0,9) >0,
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In our simplified setting, the transport coefficients x, o, 05 and the Planck’s
coeflicient a are supposed to be fixed positive numbers. Finally the damping term
with coefficient v > 0 of the Darcy type can be interpreted here as a diffusion of
a light gas into a heavy one.

We are going to prove that, under the above structural assumptions on the
equation of state, system (1.10)—(1.14) has a global smooth solution close to any
equilibrium state.

THEOREM 2.1. Let (@ 0,9, E,, ?) be a constant state with o > 0, 9 > 0 and
E, = av* > 0. Consider d > 7/2. There exists € > 0 such that, for any initial
state (go, 70, Yo, B2, BO) satisfying

(2.2) [ (eo, To, 9o, E°, Bo) — (0,7, E;, B)

<k,

| g s

there eists a unique global solution (o, 0,9, By, B) to (1.10)~(1.14), such that

(o-2. W, 90, E,—E,, B—B) € C([0, +00); H(R*))NC ([0, +00); HI(R?)).

In addition, this solution satisfies the following energy inequality:

(23) (et) ~ 2, 7 (1), 9() ~ 0, Bo(t) - B, B(t) - B)
/ V2 (0, T, 9 ET,Z?))

ey

||Hd 1(R3) ds

[ 7006 g+ 1By + 92 B ) 5

<C|(00 -2 W0, — 0, E° — By, Bo— B)|’

s

for some constant C > 0 which does not depend on t.

3. The Euler-MHD system
3.1. The linearized Euler-MHD system. Multiplying (1.11) by U and
using (1.10) we get

9, (; g72> + dm(; o T2 7) FVap4p) T +UTP = T T

Subtracting this relation to (1.12), using the definition C,, = dye and the ther-
modynamical identity d,e = (p —99yp)/0® (Maxwell’s relation), equation (1.12)
can be replaced by the equation for temperature
(3.1) 0C, (80 + W - V,0) + Ipydiv, @ — vid”

= div, (kV09) — oq(ad* — E,) + E,, — ?m A
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Linearizing the system (1.10), (1.11), (3.1), (1.13), (1.14) around the constant
state (@, 0,9, Er,g) with the compatibility condition E, = aﬁl and setting

_ — -
0o=1+7, 9=T+19, E.=e.+FE, and BZbJr?

we get
(3.2) Oyr +odiv, W =0,
p i 1 1
(33) 00+ 2V + 22V, T+ Ve, +— B x (curly b) + v =0,
0 0 30 1%
Ipy . . < K > Oa —3
3.4 T + = div, ¥ = divy | — VoI )| — =2 (4a0 T —e,),
(3.4) A o, ivg ivy T = @CU( a e )

S

4 — 1 —
(3.5) Orer + 3 E,div, W = div, (3 Vzer) — 0, (er — 4a193T),

(3.6) 00 + Bdiv,@ — (B -V,)7 =AAD .

Using the vector notation

the linearized system (3.2)—(3.6) maybe rewritten as

3

(3.7) OU + Y A;0;U = DAU — BU,
j=1
with
0 o 0 0O 0 0 0 0 0
o 0 0 0 B pB” 0 By/u Bs/u
0 0 0 0 0 0 0 —By/u 0
0 0 0 0 0 0 0 0 —Bi/u
A= 0 4 0 0O 0 0 0 0 0 :
0 7" 0 0O 0 0 0 0 0
0 0 0 0O 0 0 0 0 0
0 B, =By 0 0 0 0 0 0
0 Bs 0 —-B, 0 0 0 0 0
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where
/ pQ / 719 1/ 1 / ﬁﬂ ! K

o = —_, B:jv B:ia Y == 5:,*a

0 0 30 Cy 0C,
—3

4 —_— 4 aﬂ a e}

’7// = — ET7 5” = s C = a;o; s n= 70; 5 ™ = 4a0a193.
3 30, oC, 0C,

In order to apply the Kreiss theory we have to put the system (3.7) in a symmetric
form [2]. For that purpose it is sufficient to consider a diagonal symmetrizer

pe//50 0 0 0 0 000
0 p 0 0 0 0 000
0 0 u 0 0 0 000
0 00 pu O 0 00 0
(3.8) A= 0 0 0 0 ps/yY 0 00 0
0 0 0 O 0 w8’/y" 0 0 0
0 00 0 0 0 100
0 00 0 0 0 0 10
0 000 O 0 00 1

Multiplying the first equation (3.7) by jo on the left, we get

3
(3.9) AU+ A;0;U = DAU — B,

j=1

where the matrices .Zj = .ZO.Aj are symmetric, for all j = 1,2,3. More specifi-

cally,
0 pa 0 0O 0 0 0 0 0
pa’ 0 0 0 wp ws” 0 By Bs
0 0 0 0 0 0 0 —-B;, 0
0 0 0 O 0 0 0 0 -B;
A= 0 uws 0 O 0 0 0 0 0 ,
0 ws 0 0O 0 0 0 0 0
0 0 0 0O 0 0 0 0 0
0 B, -By 0 0 0 0 0 0
0 By 0 -B; 0 0 0 0 0
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The hyperbolic part of system (3.9) is now symmetric while its symmetric dissi-

pative part is given by

0
0

0 0 0O
0 0 0O
0 0 0O
0 0 0O

0
0

0

0

0

00 0 0pBd/y

0 Mﬁl/é’///,yl/ 0 0 0

0
0
0

0 0 0 O
0 0 0 O
0 0 0O
0 0 0O

D

(3.10)



DIFFUSION LIMIT WITH DAMPING FOR THE COMPRESSIBLE RADIATIVE EULER SYSTEM 293

00 0 0 0 0O 00 0
0 uwr 0 0 0 0 000
0 0 wr 0 0 0 00 0
0 0 0 0 0 000
(3.11) B=|o0 0 o0 up'CHy —pBn/y 0 0 0
00 0 0 —pB'n/y" poB"/y"0 0 0
00 0 0 0 0 00 0
00 0 0 0 0 00 0
00 0 0 0 0 000

A simple computation proves that B is a semi-definite positive matrix, that is,
tXBX >0, for any vector X € RO.

Applying the Fourier transform in z to (3.9) we get

3
(3.12) Ao, U +iY 4,0 = —|¢[*DU - BU,
j=1
or
(3.13) A0,U = E(&)U,

with E(§) = —B(&) — i A(&), where

3
(3.14) A& =) A, =
j=1

0 pa'&y pa'ls pa'és 0 0 0 0 0
pa'ty 0 0 0 pBé pB'6 —Ba&-Bsfs  Babi Bs&
o'y 0 0 0 pB'é&s up'¢&  Bi&  —-Bi&—Bs&s  Bsb
'€y 0 0 0 pBé& pf'és  Bi& Bats  —Bi&1- Doty

0 B’ nB'és nB'Es 0 0 0 0 0

0 uB"& 1" & 1p"Es 0 0 0 0 0

0 —Bx&—Bsés Bi& Bi&3 0 0 0 0 0

0 Byt —B1&1—Bsés Bt 0 0 0 0 0

0 Bt Bs&, —Bi&1— By 0 0 0 0 0
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and

(3.15) B(¢):=B+[¢’D =

o O O O
o O O O

B'n

.y/
1" 1/6//
ey 12

=

R
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O Om O O O o o o

S

O O O o o o o

>
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)
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o O O O O o o X o
SO O O O O O XX o o
o O O O O X O o o

o o oL
o o o

Algl?
Solving this equation with initial condition [70(5) we get
(3.16) U(t,€) = exp [tA; " E(€)] To (€).

In the strictly hyperbolic case D= 0, under the Kalman rank condition [12] for
the pair (A(), B), it can be proved [1] that

iC >0, )\(f) > 0:exp [tjalE(g)] < Ce= 2Ot

Due to the partially parabolic nature of the system, one can expect a similar
result when D # 0 with a parabolic smoothing effect at low frequencies and an
extra damping in the high frequency regime.

Taking benefit of the damping, we can use the Shizuta—Kawashima condition
(SK) [22] which applies to the previous system. Following the arguments of
Beauchard and Zuazua [1], we have

LEMMA 3.1. For any £ € S?, a necessary and sufficient condition for matrices
B(&) and A(€) defined by (3.14) and (3.15) to satisfy the Shizuta—Kawashima
condition (SK):

(3.17) { eigenvectors of (.Zo)il.A(ﬁ)} Nker B(€) = {0},
is that v > 0.

PROOF. (1) We first consider the case v # 0. One checks that ker B(&) is
the 1-dimensional subspace spanned by the vector (1,0,0,0,0,0,0,0,0). There-
fore, if X € kerB(¢) \ {0} is an eigenvector of (.Zo)_lA(f), we have X =
(z1,0,0,0,0,0,0,0,0), 1 # 0, and A(§)X = )\.ZOX, for some A € R. This, to-
gether with the definition of Ao and A(€), implies that A =0, & =& =& =0,
which is in contradiction with the hypothesis ¢ € S2.

(2) Next, we assume that v = 0. One checks that ker B(¢) is the 4-dimensional
subspace spanned by the vectors (z1, 2, x3,24,0,0,0,0,0).
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Let us denote by (A, X) an eigenpair of A(£), with non zero eigenvector
X € ker B(€). X satisfies the system

po! &1 + pa Eows + pal €3y = Ay,
uo' €y = Axa, puo' Eay = a3, o' €31 = Aay,
pB'§1we 4 pf'aws + pf'Ezrs = 0,
1" &1xa + pB" oy + pB"E34 = 0,
—(B2&a + Bs&s)xy + Bi&oxs + Bisry =0,
Ba&1wa — (Bié1 + Bs&s)ws + Balary =0,
B3&1wg 4 Bafaws — (B1€y + Baa)wa = 0.

Denoting B = (B1, B2, B3), ? =

rewrites

(&1.6,&3), and T = (22,23, 74), the system

po! 7€ =Amy,  pam € =AF, 8 F-€=0, pup'T-€ =0
(B 7+ (€ DB =0

%
In particular, this implies z - ¢ = 0, which in turn implies Az; = 0. As
a consequence, we have

Azy =0, T ? =0, uo/xl? =\7, (? . ?)7 =0.

%
Choosing A = 0, we see that any 7 e £tforéc ﬁL gives a nontrivial eigenpair
(A, X) with A =0 and X = (0,?,0,0,0,0,0). Hence the SK condition is not
satisfied. O

As in the equilibrium case, (3.17) is equivalent to the existence of a compen-
sating matrix:

PROPOSITION 3.2. For any & € S2, the matrices Ay, B(&) and A(§) being
defined by (3.8), (3.14) and (3.15), there exists a matriz-valued function

(3.18) K: 8% — RO*6 w = K(w)

such that

(a) w = K(w) is a C* function, and satisfies K(—w) = —K(w) for any
w e S2.

(b) K(w)Ag is a skew-symmetric matriz for any w € S2.

(c) Denoting by [A] = (A + AT)/2 the symmetric part of A, the matriz
[K(w)A(w)] + B(w) is symmetric positive definite for any w € S2.
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3.2. Entropy properties. Adding equations (1.9), (1.12) and (1.13) we
get

(3.19) 0O (;g’7|2 +oe+ B, + 21H‘§’2>
+divx<(gE+E Y+ (p+ pr) 7+ LIy §>
= div, (stxﬁ) + div, (3(1I VxEr> .

We define S, := 4aT?? /3 the radiative entropy. With these definitions, equation
(1.13) rewrites

_ 4
0y + divy (S, W) = Tidivm (3(17 VIET> . %M,

that is,
. . 1
(3.20) 8,5, + div, (S, W) = div, (30T VmET>

4da

— T, |V, T.|? —
+ 3, | |

Replacing equation (1.12) by the internal energy equation
(3.21)  Oy(0e) + div, (0e) + pdiv, @ — y|7|2
1
1 4 2
= div, (kV, ) — 04(ad” — E,) + e |curlm§| .

The entropy s of the fluid is defined by the Gibbs law Jdds = de+pd(1/p). Hence,
dividing (3.21) by 9, we find

(3.22)  0y(ps) + divy(0sT) — %\7]2

. kV 0 K|V 9|2 ad* — E, 1 2
= d1vm< 3 ) + 52 — 04 3 + o120 ‘Curlz§| .

So adding (3.22) and (3.20) we obtain

kV 19 n 1
9 30T,

(3.23) O4(0s+S,) + divx((gs +8)) — divz< VIET>

_K\V19| 2,
=25 3 LTV E, [+

ao,

OT,

(W -1 (19+Tr)(192 +T2)
19 \cuﬂ%§|2 + 7

Introducing the Helmholtz functions Hy(o,9) := o(e — Js) and H, ( T.) =
E, —185,, we check that the quantities Hy(0,9) — (0 — 0)0,H5(0,9) — H5(0,9)
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and H, 5(T,)— H, 5(1T';) are non-negative and strictly coercive functions reaching

zero minima at the equilibrium state (g, 9, E,.).

LEMMA 3.3. Let o and ¥ = T, be given positive constants. Let O1 and O
be the sets defined by

(3.24) 0 = {(g,§)€R2zg<g<2g, ;9<19<219,},
T, _
(3.25) Oy := {Tr eR: 5 < T, < 2TT}

There exist positive constants C1 2(9,9) and C34(T,) such that
(a) for all (0,9) € Oy

(326)  Ci(lo—7o|” + 9 —9|*) < Hz(0,9) — (0 — 0)0,H5(2,9) — Hy(0,9)
< Co(lo—o* + [0 — 9]?),

(b) for all T, € Oy
(3.27) Cs|T, —T,|* < H,5(T) - H, 5(T,) < Cy|T, — T,

PROOF. (a) is proved in [9] and we only sketch the proof for convenience.
We have the decomposition

0 — Hg(o,9) — (0 — 0)0,Hy(2,9) — Hg(e,0) = F(o) + G(0),

where F(o) = Hy(0,9) — (¢ — 0)9,Hyz(0,9) — Hy(o,9) and G(o) = Hy(e, V) —
H5(0,7). Using the Gibbs law ¥ds = de + pd(1/0), one easily proves that
02Hg(0,9) = (09/(00))8,p(0,), which is positive according to (2.1). Hence, F
is strictly convex and reaches a zero minimum at p. Turning to G, we have, still
using Gibbs law, dyHy(0,9) = o((¥ — 3J)/9)dge(0,9). Thus, using (2.1) again,
we infer that G is strictly decreasing for ¥ < 9 and strictly increasing for ¥ > 9.
Computing the derivatives of Hy leads directly to the estimate (3.26).
(b) follows from the properties of the function
— 3 4 — a —4
v H 5(z)— H, 5(T,) =ax (:v —3 79) + 3 9 O
From this simple result, we can obtain an identity leading to energy esti-
mates. Multiplying (3.23) by ¥, subtracting the result to (3.19) and using the
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conservation of mass, we get

328) o5 d TP+ Hylod) ~ (0~ D052 7)
o Hg(E’ 5) + HT,E(TT> - Hrﬁ(TT) + 22|§|2)
+ div, ((,Q(E —e)+E)U + (p+p)W

— _ 1
ﬁ(g(ss)JrSr)?Jruﬁxg)

. 1 — . kV 0 1
— div, (wxﬂ + g VxEr> - ﬁdlvx< L vxEr)
B v L — ) 9
- - 19 Y Tr acEr
92 30 VaErl
— ao, v 1 2
0 G (0 = T)(0 + 1) + T2) - [ - _—r lewrl, B .

In the sequel, we define
V=(pn7.0.E.B), V=05 B)
and

(3.29) N(t)? = sup [[V(s) = V| Fams

0<s<t
t
+ [ 192V 6 gams )+ V0 oo
2 § 2
+ ”VIET(S)HHGZ(R3) + Hvl (S)HHd(]Ra)) ds
t
[ (1969 = Ty s sy + 1T () s ) .
Recall that T, = Erl/4a_1/4. Note also that, since div,, (?) = 0, we have

(3.30) /RS |ewrl, B|” = /Rg V. B|,

as far as § € H'(R?), and similarly for any H® norm. This allows, in the sequel,
to replace curlzg by V. b5 in all bounds.

8.2.1. L=(H?) estimates. Using the entropy properties, we are going to
prove the following result:

PROPOSITION 3.4. Let the assumptions of Theorem 2.1 be satisfied. Consider
a solution (9, U, 9, E,) of system (1.10)~(1.14) on [0,t], for some t > 0. Then,
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the energy defined by (3.29) satisfies

(3.31) [V (t) = V72 +/t (Va9 22 + 1 Ve Br ()72 sy
H106) = Lo (5) ey + 17 6) [Facay + [V B )] ar) s
< C(N()N(0)?,
where the function C is non-decreasing.
PRrROOF. Following the proof of [13, Lemma 3.1] we define
(3.32) n(t,) = Hy(o.9) — (0~ 20, Hy (2.9) — Hy (2. 9) + H, 5(13) — H, 5(T.).

We multiply (3.23) by ¥, and subtract the result from (3.19). Integrating over
[0, 4] x R3, we find

/Rg( |7| t)+n(t,z)+ ]§|)dx+//,€ IV, 19|2+7T\VE\219

/ . 19T P99+ To) (0 — T,)2(0% + T2) + 19,/|7| + |Cur1 §|

s/RSn(Ow)dH/R o[ @ol” +*/ |Bof”

(3.33) M(t) = sup sup [max(|o(s, ) —al, ¥ (s,2)],
0<s<t xcR3

Defining

10(s, ) — 3], |En(s,2) — By, | B — B|)],

and applying Lemma 3.3, we find that

||V(t)—7||%2(R3)+/ (HV 19 HLz(RS)"’_HVrET(S)||%2(R3)+H19(8)_TT(8)”iz(R?’)

+ 117 (5) 132 gy + [|ewrl, Bs)|

||L2(]R3)) ds < C(M(t))N(0),

where C': RT — R* is non-decreasing. Equation (3.30) allows to replace curlmﬁ
by Vxﬁ in the above estimate. Finally, we point out that, since d > 7/2 > 3/2,
due to Sobolev embeddings, there exists a universal constante Cy such that
M(t) < CoN(t). Since C is non-decreasing, this proves (3.31). O

PROPOSITION 3.5. Setting V' = (Q,ﬁ,ﬁ,Er,ﬁ)T, under the same assump-
tions as in Theorem 2.1, we have the following estimate:

(3:34) 0V (D)l -1 zs) < CND)(IVaV -1 ey + [ V20 gracay
FIVaErllmagesy + 19 = Toll oz + 12 aras gy + 19 B lsraces)-
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PRrROOF. The system satisfied by V may be written formally as

3
(3.35) 0V + > A (V)d,,V =D(V)AV — B(V) =0,
j=1
where
0 o 0 0O 0 0 0 0 0
a 0 0 0 B B 0 Bsfou Bslon
0 0 0 0 0 0 0 —Bi/ou 0
0 0 0 0O 0 0 0 0 —Bi/op
A= 0 75 o0 0 0 0 0 0 0
0 7" 0 0 0 w 0 0 0
0 0 0 0 0 0 u 0 0
0 B, =Bi 0 0 0 0 uy 0
0 By, 0 —-B, 0 0 0 0 uy
0 0 o 0 0 0 0 0 0
0 0 0 0 0 0 —Byjop O 0
& 0 0 0 B B" Bifou 0 Bsjou
0O 0 0 0 0 0 0 0 —Bs/op
AL=0o o % o o0 o 0 0 0
0 0 7" 0 0 u 0 0 0
0 -B, By 0 0 0 us 0 0
0O 0 0 0 0 0 0 us 0
0 0 By —By, 0 0 0 0 us
0 0 0 o 0 0 0 0 0
0 0 0 0 0 0 —Bs/on 0 0
0 0 0 0 0 0 0 —Bs/op 0
a 0 0 0 E’ 3’/ Bi/op  Bafop 0O
A= 0 o0 0 7 0 0 0 0 0
0 0 0 7" 0 wus 0 0 0
0 -B; 0 B, 0 0 us 0 0
0 0 —-By B, 0 0 0 us 0
0 0 0 0 0 0 0 0 us
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and
0O 0 0 0 0O 0 0 o0 0O
00 00O 0O O O 00O
00 0 0O O O O 00O
00 0 0O O O O 00O
D= 00 0O0%Sd¢%¥ O O0OO0OTO0],
0000 0 & 0 0O
00 0 0 0O O X 0O
00 0 0O O O O X O
00 0 0O O O O 0 X
0
2
¢ 2
v
3 —ﬁ(aﬁ“ —E.)+ ﬁ%k}urlajgp + LCJ
. oq(ad* — E,) 7
0
0
0
where
~1 _ Do > Py n 1 ~/ 30py
o = —), ﬂ = /8 = 5 Y= 9
0 0 30 30C,
~ 4 -~ 1
6/ — i I —— Er 6” — .
oc, T T 3Em 30,

It is possible to symmetrize this nonlinear system in the same spirit as what we
have done for the linearized system (3.7). However, we do not need to do so
here. So we write
3 n
OV == [A;(V) = A4;(V)]0.,V = > A;(V)0,,V
j=1 j=1

+[D(V) = D(V)]AV + D(V)AV — B(V).

We first observe that these matrices are Lipschitz continuous with respect
to V, away from ¢ = 0 and ¥ = 0 and also that the matrices B and D have,
respectively, the same structure as those defined in (3.10). Note also that, since
d—1>5/2=3/2+ 1, Sobolev embeddings imply that H¢~1(R?) is an algebra.
Therefore, we have

3
100V || a1 ) sa)(l + D [M(V) - A;«(V)HH“(RB)) IVaV || a1 e

Jj=1

+Co(1+ [ DV) = D(V)| jyacs (g
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(1D -1 gy + IAB -1 ey + llenrly(curl, B) | gra- )

+ Co(1+[BV) = BV)|| a1 sy

(Il - T |l a1 (msy + ||7||Hd—1(R3))7
whence,

10V [ ra-1(rsy < Co(1+ |V = V| ga—1(rs))
(IVaV ga-1(gey + 1A ga-1(may + |AE ]| gra—1 (rs)
+ ||A§||Hd*1(]R3) + 19— Tl a1 (msy + ||7||Hd*1(R3))7
which proves (3.34). O
Next, we bound the spatial derivatives as follows:

PROPOSITION 3.6. Assume that the hypotheses of Theorem 2.1 are satisfied.
Let k € N? be such that 1 < |k| < d, where d > 7/2. Then, we have

t
(336) 05V (Dl72(es) +/0 (105 V20(5) 172 s
+ 105 VaEr ()72 gs) + 105 (9 = T) (5) |72 es)

+||okv, B ()| + |07 (5) ds

t
< CoN(0)? + CoN (8) / IV V() e,
0

IV () sy + Ve Brll3aes) + 19(5) = To(s) 301 (gs)
+ || (s) +|V.B(s)

PRrROOF. Here, we need to symmetrize the nonlinear system. For this purpose,

HL2 R?’)

] A () raca) s

we multiply (3.35) on the right by the matrix

o~

oo 00 0 0 0 00 0
0O % 00 0 0 00 0
0O 0 g 0 0 0 00 0
0 00 u O 0 00 0
(3.37) Ao(V) = 0 0 0 0 /By 0 000
0O 00 0 0 u/B3 00 0
0O 000 0 0 100
0O 000 0 0 010
0 000 0 0 00 1

This gives

(3.38) V)o,V = Z A;(V)0,,V +D(V)AV — B(V) =0,
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where A;(V) = Ay(V)A;(V), B(V) = Ao(V)B(V) and D(V) = Ay(V)D(V) are
all symmetric matrices. Applying 0% to (3.38) then taking the scalar product
with the vector ¥V, and integrating over [0,#] x R3, we find

! / [(AdV) - 05V’ de
2 Jps
t
T / (DY, (05V)) - Va(94V) dar dt + / / ) - (08V) du d
0 R3 R3
:// (2(11+12)—13—I4—15> dz dt,
0 JR3
where
= 8, (Ap(V)) oV - akv, Za V))orv - akv,
N 3
Iy = [0F, A(V)] o,V - 08V, Ia=> [0k, A;(V)]0.,V - 94V,
j=1

=0F(B(V)) - okv.
We estimate separately each term of the right-hand side. First, we have

t t
[ [m=c [ [ joviov]
0 JR3 0 JR3

t
SC// |5§V|2(|V7;V|+|B(V)|+|DAV|)
0 R3

t
< CN(t)/O 195V () e .

where we have used the Sobolev embeddings and the fact that d > 7/2. A similar

computation gives
// || < CON(t /Hak HL2(]R3)

We estimate I3 by applying the Cauchy—Schwarz inequality:

[0 10V 05, A1V

Next, we apply the same estimate for commutators and the composition of func-
tions (see [15, Proposition 2.1]), and |k| < d:

H[ AO }atVHm(W) = H[@’;,ﬁo( ) = Ao(V ]atv||L2(R3)
= C(HatVHLN(RS‘)HVT‘AO(V)Hdel(R‘?) + ||atVHHd*1(]R3)||Vz‘AO(V)||L°O(R3))'
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Moreover, we have
(339) HVI./Z{(](V) HHd—l(]RS)
(3.40) [V Ao (V)

<OV = Vl]gagsy < CN(t),
HLOO(RS) < C||VaV || ga-1rs) < CN(t).

Hence, I3 satisfies
t
| [l < covann
0 JRrs

t
/0 (I V ()13t sy + (Va0 gy + 1V B ()20

+119(s) = T () 31 oy + I ()1 oy + I\Vzﬁ(S)llfqd(m)) ds.

Here, we have used (3.34).
The integral of 14 is dealt with by using similar computations.
Turning to 5, we use the particular form of 9% B(V'). More precisely, we have

OE(B(V)) 08V = ak(?m— 7) o

_y (";(aﬁ‘* — 7”' >.a§ﬁ+a’;(0a(aﬁ4 —E,)) 0B,

from which, using estimates for the composition of functions (see Proposition
2.1 in [15]) we infer

t t
| [ < one [C1okve s, as

Collecting the estimates on Iy, Is, Is, I and I, we have proved (3.36). O
The above results allow to derive the following bound:

PROPOSITION 3.7. Assume that the assumptions of Theorem 2.1 are satisfied.
Then, there exists a non-decreasing function C': RT — Rt such that

B4V =Pl + [ (90060 e+ 1923 e
T 1[9(5) = T0() 130 gy + | T () ||Hd<Rz+||V§ (5) [ 5ro gy 5
< OV [NOP + 50 [ (VY6 s oy + 199060 e
VB () By + 1905) — T5) s
oo + IV B e ) 5]

PrOOF. We sum up estimates (3.36) over all multi-indices k such that |k| < d,
and add this to (3.31). This leads to (3.41). O
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3.2.2. L?(H9~1) estimates. In this section, we derive bounds on the right-
hand side of (3.41). For this purpose, we adapt the strategy of [22], which
was further developed in [10]. We apply the Fourier transform to the linearized
system and use the compensating matrix K to prove estimates on the space
derivatives of V.

PROPOSITION 3.8. Assume that the assumptions of Theorem 2.1 are satisfied.
Then there exists a non-decreasing function C: R™ — RY such that

(3.42) / IV ()l a2 sy ds < CON )N () + Vo = Vo).

PROOF. As a first step, we apply the symmetrizer of the linearized system
(3.7) (which leads to (3.9)) to the nonlinear system (1.10)—(1.12), which then
reads

3
Ao(V)aV + 3 A;(V)8,,V = DAV — B(V)V.
=1

Of course, this system is not symmetric. However, the corresponding linearized
system (3.9) is symmetric. Next, we rewrite the nonlinear system by setting

U=V -V:

3
Ay(V)0U + > A;(V),,U = DAU — B(V)U — B(V)V.

Therefore, multiplying this system on the left by A, (V) (.ZO(V))A, we find

3
(3.43) Ac(V)OU +> " A;(V)0,,U = H,
where
3
H = —A(M) S [(Ao(V)) A (V) = (Ao(V) " A;(V)) 0,V
j=1

+ «ZO(V) (AVO(V)) “'DAU — «ZO(V) (VZO(V)) 7lg(V)U
— A(V)(A(v)) BV

We apply the Fourier transform to (3.43), and then multiply on the left by
—i(U)*K(&/]£]), where * denotes the transpose of the complex conjugate, and
K is the compensating matrix (see Proposition 3.2). Taking the real part of the

result, we infer
(3.44) Im ((ﬁ’fK(é)Ao (v)aﬁ) + |§|<0)*K<é|>,4(é>z7

- (s(E)a)
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where the matrix A(£/|€]) is defined by (3.14). According to Proposition 3.2,
KAy(V) is skew-symmetric, hence

o I3 — . 1d L x £ — 0~
Im ((U) K(Kl)AO(V)@U) L <(u) K<§|>A0(V) U).
Next, we also have

<&%)|ﬂ@YK(éJA<Z)ﬁ:“W”ﬁK(®)A<a) 5(g)]7

— |€l(U)"BU - |¢|(U)"DU.

Hence, still applying Proposition 3.2, there exists c; > 0 and a3 > 0 such that

e (€N (€A ~ o
(3.46) 1¢I(D) K(K')A<§|>U>a1§||U| |€|(|g(19 )
6B B[ +1¢P|B - B + 16P|7) + €20 —T.).

Finally, we estimate the right-hand side of (3.44) using the Cauchy—Schwarz
inequality and the Young inequality:

(347 o (0% () )| < =10 + gl

for any € > 0. We choose ¢ small enough, insert (3.45)-(3.46)-(3.47) into (3.44),
and find

10T < O (e D)+ e(E T + 6B - B + i

CERTT ) + Igl|Hy m((ﬁ)*K(é>AO(V) ﬁ)}
We multiply this inequality by |¢|*~!, for some 1 <1 < d, and get
(3.48) [¢P![O) <ClleP (e -0) | + |¢(B - By’
+IEP|B — B + [T + TP
A - e g (@)K () 4]
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We integrate this inequality over [0,¢] x R, and use Plancherel’s theorem:

(3.49) /(:/R DAY

lk|=l—1

t
gc// S (05,0 + |05, B [P+ |05, B 0w, 7+ [0k H )
0 JR® p=i—1
t

Ot [ g {(ﬁ)%(é)%(v)ﬁ} .

0
The matrix K (£/|¢|) is uniformly bounded for £ € R3 \ {0}, so we have

[ e [(ﬁ)*K (é)““f’ (V)ﬁh

<o [Laviproars [ a+ o)
<C(IV = Vligsy + Vo = VI gsy)-

We insert this estimate into (3.49), sum the result over 1 <[ < d, which leads to

t

t
(3.50) /0 VoV || ra—1(rsy < C<|V — Viasy + 1Vo = Vlias
t 2
+/0 (”vm'ﬂ”%ﬂ*l(R?’) + ||va:Er||§.1d—1(]R3) + ||V17||Hd—1(]1§3)

In order to conclude, we need to estimate the perturbation H. For this purpose,
we use that H?~'(R?) is an algebra: for any s < t,

||H(3)||%1d—1(111<3) < CN(t)”V:vVHHd*l(RB)-
Inserting this into (3.50), we prove (3.42). O
We are now in position to conclude with the

PrOOF OF THEOREM 2.1. We first point out that local existence for system
(1.10)—(1.12) may be proved using standard fix-point methods. We refer to [15]
for the proof. The existence is proved in the following functional space:

X(0,7) ={V, V-V e C(0,T; H{R?)), V.,V € L*([0,T}; H'(R?)),
Vo, VoEr, Vo € L2((0,T]; HA(R?)}.

In order to prove global existence, we argue by contradiction, and assume that
T. > 0 is the maximum time existence. Then, we necessarily have

(3.51) lim N(t) = +oo,

t—T,
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where N(t) is defined by (3.29). We are thus reduced to prove that N is bounded.
For this purpose, we use the method of [13], which was also used in [18]. First
note that, due to Proposition 3.7 on the one hand, and to Proposition 3.8 on

the other hand, we know that there exists a non-decreasing continuous function
C: Rt — R* such that

(3.52) N(t)> < C(N(t)(N(0)®> + N(t)*) forall T € [0, T, .
Hence, setting N(0) = ¢, we have
(3.53) % < C(N(®).

Studying the variation of ¢(N) = N?2/(e? + N3), we see that ¢'(0) = 0,
that ¢ is increasing on the interval [0, (2¢2)!/?] and decreasing on the interval
[(26%)'/3, +00). Hence,

2/3
max ¢ = o((262) /%) = ;(i) .

Hence, the function C' being independent of €, we can choose € small enough to
have ¢(N) < C(N) for all N € [0, N*], where N* > 0. Since C is continuous,
(3.53) implies that N < N*. This is clearly in contradiction with (3.51). O
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