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EXISTENCE OF SOLUTIONS

FOR THE SEMILINEAR CORNER DEGENERATE

ELLIPTIC EQUATIONS

Jae-Myoung Kim

Abstract. In this paper, we are concerned with the following elliptic equa-
tions: {

−∆Mu = λf in z := (r, x, t) ∈ M0,

u = 0 on ∂M.
Here, λ > 0 and M = [0, 1)×X× [0, 1) as a local model of stretched corner-

manifolds, that is, the manifolds with corner singularities with dimension

N = n + 2 ≥ 3. Here X is a closed compact submanifold of dimension n
embedded in the unit sphere of Rn+1. We study the existence of nontriv-

ial weak solutions for the semilinear corner degenerate elliptic equations

without the Ambrosetti and Rabinowitz condition via the mountain pass
theorem and fountain theorem.

1. Introduction

In this paper, we are concerned with some results about the existence and

multiplicity of weak solutions for elliptic equations in a domain M:

(1.1)

−∆Mu = λf in z := (r, x, s) ∈M0,

u = 0 on ∂M.
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Write M = [0, 1)×X× [0, 1) as a local model of stretched corner-manifolds, that

is, the manifolds with corner singularities with dimension N = n+ 2 ≥ 3. Here

X is a closed compact submanifold of dimension n embedded in the unit sphere

of Rn+1. Let M0 denote the interior of M and ∂M = {0} ×X × {0} denote the

boundary of M. The so-called called corner Laplacian is defined as

∆M = (r∂r)2 + (∂x1
)2 + . . .+ (∂xn)2 + (rs∂s)

2.

The corner-Laplacian is a degenerate elliptic operator on the boundary ∂M. Such

kinds of degenerate operators have been studied by many authors; see e.g. [5],

[11], [12]. In [3], [4], Chen et. al. introduced the corner type weighted p-Sobolev

spaces and discussed the various properties of this space.

On the other hand, the critical point theory, originally introduced in [2],

plays a decisive role in finding solutions to elliptic equations of variational type.

It is well known that one of crucial ingredients for ensuring the boundedness of

Palais–Smale sequence of the Euler–Lagrange functional and to apply the critical

point theory, is the Ambrosetti–Rabinowitz condition ((AR)-condition for short)

in [2]:

(AR) There exist positive constants C and ζ such that ζ > p and

0 < ζF (x, t) ≤ f(x, t)t for x ∈ Ω and |t| ≥ C,

where F (x, t) =
∫ t

0
f(x, s) ds and Ω is a bounded domain in RN .

The (AR)-condition being natural to guarantee the boundedness of Palais–Smale

sequence is very restrictive. Many people have tried to drop the (AR)-condition

for elliptic type problem associated with the p-Laplacian; see [1], [8]–[10], [13]. In

this regard, we are to show the existence of multiple solutions for problem (1.1)

without the (AR)-condition. In particular, following in [8, Remark 1.8], there

are many examples of problems where this condition on the nonlinear term f is

not satisfied; see [1], [9], [10].

Thus, motivated by these examples and references, the main aim of this

paper is to show the existence of weak solutions to the problem above without the

(AR)-condition using the mountain pass theorem and fountain theorem. Novelty

of this paper is to obtain existence results to the semilinear corner degenerate

elliptic equations provided f has mild assumptions different from those of [1],

[9], [10]. To the best of our knowledge, here are very few existence results in this

situation.

Now following [3], [4], we define the weighted Lγ1,γ2p -space on R+×RN ×R+

as follows.

Definition 1.1. Let (r, x, s) ∈ R+ × RN × R+, weight data γ1, γ2 ∈ R and

1 ≤ p <∞. Then

Lγ1,γ1p

(
R+ × RN × R+,

dr

r
dx

ds

rs

)
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denotes the space of all u(r, x, s) ∈ D′(R+ × RN × R+) such that

‖u‖Lγ1,γ1p (R+×RN×R+)

≤
(∫

R+×RN×R+

∣∣rN/p−γ1tN/p−γ2u(r, x, t)
∣∣p dr

r
dx

ds

rs

)1/p

<∞.

By the above weighted Lγ1,γ2p space, we can define the following weighted

p−Sobolev spaces on R+ × RN × R+ with natural scale for all 1 ≤ p <∞.

Definition 1.2. Let m ∈ N, γ1, γ2 ∈ R, and set N = n + 2,the weighted

Sobolev space

Hm,(γ1,γ2)
p (R+ × RN × R+) =

{
u ∈ D′(R+ × RN × R+) :

(r∂r)
l∂αx (rs∂t)

ku(r, x, s) ∈ Lγ1,γ1p

(
R+ × RN × R+,

dr

r
dx

ds

rs

)}
for k, l ∈ N and the multiindex α ∈ Nn, with k+|α|+l ≤ m. Moreover, the closure

of C∞0 functions in Hm,(γ1,γ2)
p (R+ × RN × R+) is denoted by Hm,(γ1,γ2)

p,0 (R+ ×
RN × R+).

Similarly, we can define the following weighted p-Sobolev spaces on an open

stretched corner R+ × RN × R+,

Hm,(γ1,γ2)
p (R+ ×X × R+) =

{
u ∈ D′(R+ ×X × R+) :

(r∂r)
l∂αx (rs∂s)

ku(r, x, s) ∈ Lγ1,γ1p

(
R+ ×X × R+,

dr

r
dx

ds

rs

)}
for k, l ∈ N and the multiindex α ∈ Nn, with k+ |α|+ l ≤ m, which is a Banach

space with the following norm

‖u‖Hm,(γ1,γ2)
p (R+×X×R+)

=

{ ∑
l+|α|+k≤m

∫
R+×X×R+

∣∣rN/p−γ1sN/p−γ2(r∂r)
l∂αx (rs∂s)

ku(r, x, s)
∣∣p dr

r
dx

ds

rs

}1/p

.

Moreover, the subspace Hm,(γ1,γ2)
p,0 (R+ ×X × R+) denotes as the closure of C∞0

functions in Hm,(γ1,γ2)
p (R+ × X × R+). Now we can introduce the following

weighted p-Sobolev space on the finite stretched corner M.

Definition 1.3. Let m ∈ N, 1 ≤ p < ∞ and γ1, γ2 ∈ R. Wm,p
loc (M0) is the

classical local Sobolev space. Then we define

Hm,(γ1,γ2)
p (R+ ×X × R+) =

{
u(r, x, t) ∈Wm,p

loc (M0) :

(wσ)u ∈ Hm,(γ1,γ2)
p (R+ ×X × R+)

}
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for any cutoff functions w = w(r, x) and σ = σ(t, x), supported by a collar

neighbourhoods of (0, 1)× ∂M and ∂M× (0, 1), respectively.

The following compact embedding is given in [3, Proposition 3.3].

Lemma 1.4. The embedding

H1,((N−1)/2,N/2)
2,0 (M) ↪→ H1,((N−1)/l,Nl)

l,0 (M)

is compact for 1 < l < 2∗.

2. Existence of weak solutions

In this section, we briefly recall definitions and some elementary properties

of the weighted Sobolev spaces (see [3], [4] for a detailed description).

Let X ⊂ Sn be a bounded open set in the unit sphere of Rn+1
x , then the finite

corner is defined as M = (E× [0, 1))/(E×{0}), where the base E is a finite cone

defined as E = ([0, 1)×X)/({0} ×X). Thus, the finite stretched corner is

M ⊂ E × [0, 1) = [0, 1)×X × [0, 1)

with the smooth boundary ∂M = {0} ×X × {0}, and here we denote M0 as the

interior of M. In this paper, we shall use the coordinates (r, x, t) ∈M.

Next, we consider appropriate assumptions for the nonlinear term f . Let us

denote F (x, t) =
∫ t

0
f(x, s) ds and 2 < p < 2∗.

(F1) f : M × R → R satisfies the Carathéodory condition in the sense that

f( · , t) is measurable for all t ∈ R and f(x, · ) is continuous for almost

all x ∈M.

(F2) There exist nonnegative functions ρ, σ ∈ L∞(M) such that

|f(x, t)| ≤ ρ(x) + σ(x) |t|p−1

for all (x, t) ∈M × R and for all (x, t) ∈M× R.

(F3) There exists δ > 0 such that

F (x, t) ≤ 0, for x ∈M, |t| < δ.

(F4) lim
|t|→∞

F (x, t)/|t|q =∞ uniformly for almost all x ∈ RN and q > 1.

(F5) There exist real numbers c0 > 0, r0 ≥ 0, and κ > N such that

|F (x, t)|κ ≤ c0 |t|κ F(x, t)

for all (x, t) ∈M×R and |t| ≥ r0, where F(x, t) = f(x, t)t− qF (x, t) ≥ 0

with q > 2.

Lemma 2.1. For u := u(r, x, t) ∈ H1,(γ1,γ2)
p,0 (M), 1 ≤ p < ∞, the following

estimate holds

‖u‖Lγ1,γ2p (M) ≤ C‖∇Mu‖Lγ1,γ2p (M),

where d is the diameter of M.
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For u ∈ H1,(N−1)/2,N/2
2,0 (M), the Euler–Lagrange functional

Iλ : H1,(N−1)/2,N/2
2,0 (M)→ R

is defined by

Iλ(u) =
1

2

∫
M
r|∇Mu|2 dσ −

∫
M
rF (z, u) dσ, dσ =

dr

r
dx

ds

rs

Definition 2.2. Let N ≥ 3. We say that u ∈ H1,(N−1)/2,N/2
2,0 (M) is a weak

solution of the problem (1.1) if

〈I ′(u), u〉 =

∫
M
r(∇Mu)(∇Mϕ)dσ −

∫
M
rf(z, u)ϕdσ,

for all ϕ ∈ H1,(N−1)/2,N/2
2,0 (M). Here, I ′( · ) denotes the Fréchet differentiation.

Remark 2.3. In [4], the critical points of Iλ(u)in H1,(N−1)/2,N/2
2,1 (M) are the

weak solutions of Dirichlet problem.

In the following result we are to show that the energy functional Iλ satisfies

the geometric conditions of the mountain pass theorem.

Lemma 2.4. Assume that (F1)–(F4) hold. Then the geometric conditions of

the mountain pass theorem hold, i.e.

(a) u = 0 is a strict local minimum for Iλ(u).

(b) Iλ(u) is unbounded from below on H1,((N−1)/2,N/2)
2,0 (M).

Proof. By (F3), u = 0 is a strict local minimum for Iλ(u). Next we show

condition (b). It is obvious that Iλ is bounded from below and Iλ(0) = −Iλ(0) =

0. By (F4), for any M > 0, there exists a constant δ > 0 such that

(2.1) F (x, t) ≥M |t|q , q > 2

for |t| > δ and for almost all x ∈ RN . Take v ∈ H1,((N−1)/2,N/2)
2,0 (M) \ {0} with

‖v‖H1,((N−1)/2,N/2)
2,0 (M)

= 1. Then (2.1) implies that

Iλ(t̃v) =
t̃2

2

∫
M
r|∇Mv|2dσ − λ

∫
M
rF (x, t̃v) dσ ≤ t̃

(
1− t̃q−2λ

∫
M
rF (x, t̃v) dσ

)
for sufficiently large t̃ > 1. If M is large enough, then we assert that Iλ(t̃v) →
−∞ as t̃→∞. Hence the functional Iλ is unbounded from below. �

Using similar arguments as in [7, Theorem 4.1], the following lemma is easily

checked. Also, we can easily see that the functional Iλ as well as its deriv-

ative I ′λ are weakly-strongly continuous on X by the analogous arguments in

[6, Lemma 3.2]: we omit the proof. That is, the operator I ′λ is a mapping of

type (S+).
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Lemma 2.5. Assume that (F1)–(F4) hold. Then the functional Iλ : X → R
is convex and weakly lower semicontinuous on X. Moreover, the operator I ′λ is

a mapping of type (S+), i.e. if

un ⇀ u in X and lim sup
n→∞

〈I ′λ(un)− I ′λ(u), un − u〉 ≤ 0,

then un → u in X as n→∞.

Lemma 2.6. Let 3 ≤ N . Assume that (F1)–(F5) hold. Then the functional

Iλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in H1,((N−1)/2,N/2)
2,0 (M), that

is,

(2.2)
Iλ(un)→ c,

‖I ′λ(un)‖(
H1,((N−1)/2,N/2)

2,0 (M)
)∗(1 + ‖un‖H1,((N−1)/2,N/2)

2,0 (M)

)
→ 0

as n→∞, which implies that

(2.3) c = Iλ(un) + o(1) and 〈I ′λ(un), un〉 = o(1),

where o(1)→ 0 as n→∞. If {un} is bounded in H1,((N−1)/2,N/2)
2,0 (M), it follows

that {un} converges strongly to u in H1,((N−1)/2,N/2)
2,0 (M). In fact, this statement

is similar of that Proposition 2.6 in [3]. Hence, it suffices to verify that the

sequence {un} is bounded in H1,((N−1)/2,N/2)
2,0 (M). We argue by contradiction.

Suppose that the sequence {un} is unbounded in H1,((N−1)/2,N/2)
2,0 (M). So then

we may assume that

(2.4)
‖un‖H1,((N−1)/2,N/2)

2,0 (M)
> 1,

‖un‖H1,((N−1)/2,N/2)
2,0 (M)

→∞, as n→∞.

Define a sequence {wn} by wn = un/‖un‖H1,((N−1)/2,N/2)
2,0 (M)

. Then it is obvious

that {wn} ⊂ H1,((N−1)/2,N/2)
2,0 (M) and ‖wn‖H1,((N−1)/2,N/2)

2,0 (M)
= 1. Hence, up to

a subsequence, still denoted by {wn}, we obtain wn ⇀ w in H1,((N−1)/2,N/2)
2,0 (M)

as n→∞ and by Lemma 1.4, we have

(2.5)
wn(x) → w(x) a.e. in M,

wn → w in H1,((N−1)/p,N/p)
p,0 (M)

as n→∞ for 1 < p < 2∗. Due to the condition (2.3), we have that

(2.6) c = Iλ(un) + o(1) =
1

2

∫
M
r|∇Mu|2 dσ − λ

∫
RN

rF (x, un) dx+ o(1).

Note that, due to Lemma 2.1,

(2.7)

∫
M
r|∇Mu|2 dσ ≥ d‖u‖2H1,(N−1)/2,N/2

2,0 (M)
.
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Since ‖un‖H1,((N−1)/2,N/2)
2,0 (M)

→∞ as n→∞, we assert that

(2.8)

∫
RN

rF (x, un) dx =
1

2λ

∫
M
r|∇Mu|2 dσ −

c

λ
+
o(1)

λ
→∞ as n→∞.

The assumption (F3) implies that there exists t0 > 1 such that F (x, t) > |t| for

all x ∈ RN and |t| > t0. From (F1) and (F2), we have that there exists a positive

constant C such that |F (x, t)| ≤ C for all (x, t) ∈ RN × [−t0, t0]. Therefore we

can choose a real number C0 such that F (x, t) ≥ C0, for all (x, t) ∈ RN ×R, and

thus
F (x, un)− C0∫
M
r|∇Mu|2 dσ

≥ 0, for all x ∈ RN and for all n ∈ N.

By (2.7), we get

(2.9)
F (x, un)− C0

‖u‖2
H1,((N−1)/2,N/2)

2,0 (M)

≥ 0.

Set Ω = {x ∈ RN : w(x) 6= 0}. By the convergence (2.5), we know that

|un(x)| = |wn(x)| ‖un‖H1,((N−1)/2,N/2)
2,0 (M)

→∞ as n→∞ for all x ∈ Ω. So then,

it follows from the assumption (F3), and the relation (2.4) that for all x ∈ Ω,

lim
n→∞

F (x, un)∫
M
r|∇Mu|2dσ

≤ 1

d
lim
n→∞

F (x, un)

‖un‖2H1,(N−1)/2,N/2)
2,0 (M)

(2.10)

= lim
n→∞

F (x, un)

|un(x)|2
|wn(x)|2 =∞.

Hence we have meas(Ω) = 0. Indeed, if meas(Ω) 6= 0, then according to (2.6)–

(2.10), and Fatou’s lemma, we deduce that

1

λ
= lim inf

n→∞

∫
RN

rF (x, un) dx

λ

∫
RN

rF (x, un) dx+ c− o(1)

= lim inf
n→∞

∫
RN

2rF (x, un)∫
M
r|∇Mun|2 dσ

dx

≥ lim inf
n→∞

∫
Ω

2F (x, un)∫
M
r|∇Mu|2 dσ

dσ − lim sup
n→∞

∫
Ω

2rM0∫
M
r|∇Mu|2 dσ

dσ

= lim inf
n→∞

∫
Ω

2r(F (x, un)−M0)∫
M r|∇Mu|2dσ

dσ ≥
∫

Ω

lim inf
n→∞

2r(F (x, un)−M0)∫
M
r|∇Mu|2dσ

dσ

=

∫
Ω

lim inf
n→∞

2rF (x, un)∫
M
r|∇Mu|2dσ

dσ −
∫

Ω

lim sup
n→∞

2rM0∫
M
r|∇Mu|2dσ

dσ =∞,
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which is a contradiction. Thus w(x) = 0 for almost all x ∈M.

Observe that

c+ 1 ≥ Iλ(un)− 1

q
〈I ′λ(un), un〉(2.11)

=
1

2

∫
M
r|∇Mu|2 dσ − λ

∫
RN

rF (x, un) dσ

− 1

q

∫
M
r|∇Mu|2 dσ +

λ

q

∫
RN

rf(x, un)un dσ

=
q − 2

2

∫
M
r|∇Mu|2dσ + λ

∫
RN

F(x, un) dσ ≥ λ
∫
RN

F(x, un) dσ

for n large enough and F is defined in (F5). Let us define Ωn(a, b) := {x ∈ M :

a ≤ |un(x)| < b} for a ≥ 0. By (2.5), we note that

(2.12)
wn(x) → 0 a.e. in M,

wn → 0 in H1,((N−1)/p,N/p)
p,0 (M)

as n→∞ for 1 < p < 2∗. Hence from the relations (2.8) and (2.7), we get

0 <
1

2λ
≤ lim sup

n→∞

∫
RN

r |F (x, un)|∫
M
r|∇Mu|2 dσ

dσ(2.13)

≤ 1

d
lim sup
n→∞

∫
RN

r |F (x, un)|
‖un‖2H1,((N−1)/2,N/2)

2,0 (M)

dσ.

From (F2) and (2.12), we have∫
Ωn(0,d̃)

rF (x, un)

‖un‖2H1,((N−1)/2,N/2)
2,0 (M)

dσ(2.14)

≤
∫

Ωn(0,d̃)

ρ(x)r |un(x)|+ σ(x)r |un(x)|q /q
‖un‖2H1,((N−1)/2,N/2)

2,0 (M)

dσ

≤
C‖ρ‖L∞(RN )‖un‖H1,((N−1)/2,N/2)

2,0 (M)

‖un‖2H1,((N−1)/2,N/2)
2,0 (M)

+
‖σ‖L∞(M)

q

∫
Ωn(0,d̃)

|un(x)|q−p r |wn(x)|p dσ

≤
C‖ρ‖L∞(RN )‖un‖H1,((N−1)/2,N/2)

2,0 (M)

‖un‖2H1,((N−1)/2,N/2)
2,0 (M)

+
‖σ‖L∞(M)

q
d̃q−p

∫
RN

r |wn(x)|p dσ

≤ C

‖un‖H1,((N−1)/2,N/2)
2,0 (M)

+
‖σ‖L∞(M)

q
d̃q−p

∫
RN

r |wn(x)|p dσ → 0
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as n → ∞, where C is a positive and generic constant. Set τ ′ = τ/(τ − 1) > 1.

Since τ > N/2, we see that 2 < 2τ ′ < 2∗. Hence, it follows from (F5), (2.11),

and (2.12) that∫
Ωn(d̃,∞)

r |F (x, un)|
‖un‖2H1,(N−1)/2,N/2

2,0 (M)

dσ =

∫
Ωn(d̃,∞)

r |F (x, un)|
|un(x)|2

|wn(x)|2 dσ(2.15)

≤
{∫

Ωn(d̃,∞)

(
|F (x, un)|
|un(x)|2

)τ
dσ

}1/τ

·
{∫

Ωn(d̃,∞)

(r |wn(x)|2)τ
′
dσ

}1/τ ′

≤ c1/τ0

{∫
Ωn(d̃,∞)

F(x, un) dσ

}1/τ{∫
M
rτ
′
|wn(x)|2τ

′
dσ

}1/(2τ ′)

≤ c1/τ0

(
c+ 1

λ

)1/τ{∫
M
rτ
′−1r |wn(x)|2τ

′
}1/(2τ ′)

≤Cc1/τ0

(
c+ 1

λ

)1/τ{∫
M
r |wn(x)|2τ

′
}1/(2τ ′)

,

as n → ∞. Here, C := ‖rτ ′−1‖L∞(dσ) < ∞ with 0 < r < 1. Combining (2.14)

with (2.15), we have∫
RN

r |F (x, un)|
‖un‖2H1,(N−1)/2,N/2

2,0 (M)

dσ =

∫
Ωn(0,d̃)

r |F (x, un)|
‖un‖2H1,(N−1)/2,N/2

2,0 (M)

dσ

+

∫
Ωn(d̃,∞)

r |F (x, un)|
‖un‖2H1,(N−1)/2,N/2

2,0 (M)

dσ → 0

as n→∞, which contradicts the inequality (2.13). �

Theorem 2.7. Let N ≥ 3. Assume that (F1)–(F4) and (F5) hold. Then

problem (1.1) has a nontrivial weak solution for all λ > 0.

Proof. Note that Iλ(0) = 0. In view of Lemma 2.4, the geometric conditions

of the mountain pass theorem are fulfilled. By Lemma 2.6, Iλ satisfies the (C)c-

condition for any λ > 0, and hence we see that the energy functional Iλ satisfies

all conditions of the mountain pass theorem. Consequently, problem (1.1) has

a nontrivial weak solution for all λ > 0. �

Next, using the oddity on f and applying the fountain theorem in [14, The-

orem 3.6], we demonstrate infinitely many weak solutions for problem (1.1). To

do this, let X be a separable and reflexive Banach space. It is well known that

there are {en} ⊆ X and {f∗n} ⊆ X∗ such that

X = span{en : n = 1, 2, . . .}, X∗ = span{f∗n : n = 1, 2, . . .},
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and

〈f∗i , ej〉 =

1 if i = j,

0 if i 6= j.

Let us denote Xn = span{en}, Yk =
k⊕

n=1
Xn, and Zk =

∞⊕
n=k

Xn. Then we have

the following fountain theorem.

Lemma 2.8 ([14]). Let X be a real reflexive Banach space, I ∈ C1(X,R)

satisfies the (C)c-condition for any c > 0 and I is even. If, for each sufficiently

large k ∈ N, there exist ρk > δk > 0 such that the following conditions hold:

(a) bk := inf{I(u) : u ∈ Zk, ‖u‖X = δk} → ∞ as k →∞;

(b) ak := max{I(u) : u ∈ Yk, ‖u‖X = ρk} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e. there

exists a sequence {un} ⊂ X such that I ′(un) = 0 and I(un)→∞ as n→∞.

Using Lemma 2.8, we show the existence of infinitely many nontrivial weak

solutions for our problem.

Theorem 2.9. Let 3 < N . Assume that (F1)–(F5) hold. If f(x,−t) =

−f(x, t) holds for all (x, t) ∈ M × R, then for any λ > 0, the functional Iλ has

an unbounded sequence of nontrivial weak solutions {un} in H1,((N−1)/2,N/2)
2,0 (M)

such that Iλ(un)→∞ as n→∞.

Proof. Obviously, Iλ is an even functional and satisfies (C)c-condition.

Note that H1,((N−1)/2,N/2)
2,0 (M) is a reflexive Banach space. According to Lem-

ma 2.8, it suffices to show that there exist ρk > δk > 0 such that

(a) bk := inf
{
Iλ(u) : u ∈ Zk, ‖u‖H1,((N−1)/2,N/2)

2,0 (M)
= δk

}
→∞ as n→∞;

(b) ak := max
{
Iλ(u) : u ∈ Yk, ‖u‖H1,((N−1)/2,N/2)

2,0 (M)
= ρk

}
≤ 0,

for k large enough. Denote

αk := sup
u∈Zk,‖u‖H1,((N−1)/2,N/2)

2,0 (M)
=1

(∫
M

1

q
|u(x)|q dσ

)
, 1 < q < 2∗.

Then we have αk → 0 as k → ∞. In fact, suppose to the contrary that there

exist ε0 > 0 and the sequence {uk} in Zk such that

‖uk‖H1,((N−1)/2,N/2)
2,0 (M)

= 1,

∫
M

1

q
|uk(x)|q dσ ≥ ε0,

for all k ≥ k0. Since the sequence {uk} is bounded in H1,((N−1)/2,N/2)
2,0 (M),

there exists u ∈ H1,((N−1)/2,N/2)
2,0 (M) such that uk ⇀ u in H1,((N−1)/2,N/2)

2,0 (M)

as k →∞ and

〈f∗j , u〉 = lim
k→∞

〈f∗j , uk〉 = 0
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for j = 1, 2, . . . Hence we get u = 0. However, we obtain

ε0 ≤ lim
k→∞

∫
M

1

q
|uk(x)|q dσ =

∫
M

1

q
|u(x)|q dσ = 0,

which provides a contradiction.

Note that

∫
M
r|u|p ≤

(∫
M
r|u|2 dσ

)σ/2(∫
M
r|u|2

∗
dσ

)(p−σ)/2∗

≤ ‖u‖σ
L

(N−1)/2,1/2
2

‖u‖p−σ
L

(N−1)/2,1/2

2∗
.

By Lemma 2.1 and the corner type Sobolev inequality (see [4]), we get

(2.16)

‖u‖σ
L

(N−1)/2,1/2
2

≤ λ−σ/2k0
‖∇Mu‖σL(N−1)/2,N/2

2

≤ λ−σ/2k0
‖u‖σ
H1,((N−1)/2,N/2)

2,0

,

‖u‖p−σ
L

(N−1)/2∗,N/2∗
2∗

≤ C̃‖u‖p−σ
H1,((N−1)/2,1/2)

2,0

.

For any u ∈ Zk, it follows from condition (F2), and the Hölder inequality

that

Iλ(u) =
1

2

∫
M
r|∇Mu|2 dσ −

∫
M
rF (z, u) dσ(2.17)

≥ 1

2

∫
M
r|∇Mu|2 dσ − λ

∫
M
r |ρ(x)| |u(x)| dσ

− λ
∫
M
r
|σ(x)|
q
|u(x)|q dσ

≥ 1

2

∫
M
r|∇Mu|2 dσ − λ‖ρ‖L∞(M)

∫
M
|u(x)| dσ

− λ

q
‖σ‖L∞(M)

∫
M
|u(x)|q dσ

≥C2‖u‖2H1,((N−1)/2,N/2)
2,0

− C3λ
−σ/2
k0
‖u‖p
H1,((N−1)/2,N/2)

2,0

− C4‖u‖H1,((N−1)/2,N/2)
2,0

≥
(
C2 − C3λ

−σ/2
k0
‖u‖p−2

H1,((N−1)/2,N/2)
2,0

)
‖u‖2
H1,((N−1)/2,N/2)

2,0

− C4‖u‖H1,((N−1)/2,N/2)
2,0

,

where C2 > 0 depends on d in Lemma 2.1, C3 > 0 depends on ‖ρ‖L∞(M),

p and C̃ in (2.16), and C4 > 0 depends on ‖ρ‖L∞(M) and the measure |M |. Let

k0be large enough such that C2 − C3λ
−σ/2
k0

δ p−2
k > 0. Hence, if u ∈ Zk and

‖u‖H1,((N−1)/2,N/2)
2,0 (M)

= δk, then we deduce that Iλ(u) → ∞ as k → ∞, which

implies (a).



596 J.-M. Kim

Assume that condition (b) does not hold for some k. Then there exists

a sequence {un} in Yk such that

(2.18)

‖un‖H1,((N−1)/2,N/2)
2,0 (M)

> 1,

‖un‖H1,((N−1)/2,N/2)
2,0 (M)

→∞, as n→∞,

Iλ(un) ≥ 0.

Let wn = un/‖un‖H1,((N−1)/2,N/2)
2,0 (M)

. Then it is obvious that

‖wn‖H1,((N−1)/2,N/2)
2,0 (M)

= 1.

Since dimYk <∞, there exists w ∈ Yk \ {0} such that up to a subsequence,

‖wn − w‖H1,((N−1)/2,N/2)
2,0 (M)

→ 0 and wn(x)→ w(x)

for almost all x ∈ M as n → ∞. For x ∈ Ω := {x ∈M : w(x) 6= 0}, we get

|un(x)| → ∞ as n → ∞. As seen in the proof of Lemma 2.6, we can choose

a real number C1 such that

(2.19)
F (x, un)− C1∫
M
r|∇Mu|2 dσ

≥ 0

for x ∈ Ω and for all n ∈ N. Taking into account (2.19) and the Fatou lemma,

we assert by a similar argument to (2.10) that

lim
n→∞

∫
Ω

F (x, un)∫
M
r|∇Mu|2 dσ

dσ ≥ lim inf
n→∞

∫
Ω

F (x, un)− C1∫
M
r|∇Mu|2 dσ

dσ(2.20)

≥
∫

Ω

lim inf
n→∞

F (x, un)∫
M
r|∇Mu|2 dσ

dσ =∞.

Therefore, using the relation (2.20), we have

Iλ(un) =
1

2

∫
M
r|∇Mu|2 dσ −

∫
M
rF (z, u) dσ

≤ 1

2

∫
M
r|∇Mu|2 dσ

(
1− 2λ

∫
Ω

F (x, un)∫
M
r|∇Mu|2 dσ

dσ

)
→ −∞

as n→∞, which is contradiction to (2.18). �
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