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POSITIVE SOLUTIONS

FOR SINGULAR IMPULSIVE DIRICHLET

BOUNDARY VALUE PROBLEMS

Liang Bai — Juan J. Nieto

Abstract. In this paper, a class of singular impulsive Dirichlet bound-

ary value problems is considered. By using variational method and critical
point theory, different parameter ranges are obtained to guarantee exis-

tence and multiplicity of positive classical solutions of the problem when

nonlinearity exhibits different growths.

1. Introduction

The main purpose of this paper is to study positive classical solutions of the

following singular impulsive Dirichlet boundary value problem
−u′′(t)− 1

uα(t)
= λf(t, u(t)), t ∈ Ω,(1.1a)

∆(u′(ti)) := u′(t+i )− u′(t−i ) = Ii(u(ti)), i = 1, . . . , p,(1.1b)

u(0) = u(1) = 0,(1.1c)
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where λ ∈ (0,+∞) is a parameter, α ∈ (0, 1), Ω := (0, 1) \ {t1, . . . , tp}, 0 = t0 <

t1 < . . . < tp < tp+1 = 1, u′(t+i ) and u′(t−i ) denote the right and left limits of

u′(t) at t = tj respectively, the nonlinear term f ∈ C([0, 1] × [0,+∞); [0,+∞))

and the impulsive function Ii ∈ C([0,+∞); (−∞, 0]) for each i = 1, . . . , p.

A function u ∈ C[0, 1] satisfying the boundary condition (1.1c) is said to be

a classical solution of (1.1) if, for each i = 0, . . . , p, u|(ti,ti+1) ∈ C2(ti, ti+1) sa-

tisfies the equation (1.1a) on (ti, ti+1), the limits u′(t−i ) and u′(t+i ) exist for each

i = 1, . . . , p and satisfy the impulsive condition (1.1b). By a positive solution u

of (1.1) we mean a classical solution such that u(t) > 0 for t ∈ (0, 1).

The question of existence of solutions for singular problems has attracted

much attention of many mathematicians and physicists over many years. Topo-

logical methods and variational approach have been widely applied to study such

problems (see e.g. [2]–[5], [10]).

Impulsive effects arise from the real world and are used to describe sudden,

discontinuous jumps. For some general and recent works on the theory of im-

pulsive differential equations we refer the readers to [6], [11], [13], [14], [16]–[18],

[22]–[24], [26].

For the study of impulsive singular problems, some classical tools have been

used in the literature, such as the method of upper and lower solutions and the

monotone iterative technique, fixed point theory and Leray–Schauder alternative

principle (see e.g. [1], [9], [12]). Using variational method to study such problems

is more recent, the number of references is small [19]–[21] and all these references

are focused on periodic weak solutions. In [21] Sun and O’Regan established that

the problem

(1.2) u′′(t)− b(t)

uα(t)
= e(t); ∆(u′(ti)) = Ii(u(ti))

has at least one periodic weak solution by using the mountain pass theorem.

After that, when b(t) ≡ 1, Sun and his coworkers studied the existence of one

positive periodic weak solution generated by impulses for the problem (1.2) in [20]

and obtained a necessary and sufficient condition for the existence of one positive

periodic weak solution of the problem (1.2) in [19]. However, the study of so-

lutions for singular impulsive Dirichlet boundary value problems via variational

method has received considerably less attention.

Motivated mainly by [4], [16], in this paper we devote ourselves to studying

existence and multiplicity of positive classical solutions of (1.1) via critical point

theory. It is worth stressing that different parameter ranges are obtained to

guarantee the solvability of (1.1) when the nonlinear term f exhibits different

growths.

Choosing ε ∈ (0, 2−1/(α+1)), for λ > 0 define fε,λ : (0, 1)× R→ (0,+∞) by

fε,λ(t, x) := λf(t, (x− ϕε(t))+ + ϕε(t)) +
[
(x− ϕε(t))+ + ϕε(t)

]−α
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and for each i = 1, . . . , p, define Ii,ε : R→ (−∞, 0] by

Ii,ε(x) := Ii
(
(x− ϕε(ti))+ + ϕε(ti)

)
,

where ϕε(t) := εt(1− t) and u± := max{±u, 0}. It could be verified that ϕ−αε ∈
L1(0, 1). The continuity of f and Ii implies that fε,λ ∈ C((0, 1) × R; (0,+∞))

and Ii,ε ∈ C(R; (−∞, 0]).

In view of ε ∈ (0, 2−1/(α+1)), when x ∈ (ϕε(t), ε), we find

(1.3) 2ε ≤ ε−α ≤ x−α ≤ fε,λ(t, x) = λf(t, x) + x−α ≤ λCε + ϕ−αε (t).

where Cε := max
[0,1]×[0,ε]

f(t, x); when x ∈ (−∞, ϕε(t)], we have

2ε ≤ ε−α ≤ ϕ−αε (t) ≤ fε,λ(t, x) = λf(t, ϕε(t)) + ϕ−αε (t) ≤ λCε + ϕ−αε (t),

which combined with (1.3) yields to

(1.4) 2ε ≤ fε,λ(t, x) ≤ ϕ−αε (t) + λCε, for (t, x) ∈ (0, 1)× (−∞, ε) and λ > 0.

For the convenience, we introduce some assumptions:

(H1) There exist 0 < a < π2 and C > 0 such that

f(t, x) ≤ ax+ C, (t, x) ∈ (0, 1)× [ε,+∞);

(H2) lim
x→+∞

f(t, x)

x
= π2 uniformly for t ∈ (0, 1);

(H3) There exist b > π2 and C > 0 such that

C(x+ 1) ≥ f(t, x) ≥ bx− C, (t, x) ∈ (0, 1)× [ε,+∞);

(H4) There exist σ > 2, τ > 0 and C > 0 such that

(1.5) lim inf
x→+∞

1

x1−α

(
f(t, x)x− σ

∫ x

ε

f(t, y) dy

)
≥ τ

uniformly for t ∈ (0, 1), and for each i = 1, . . . , p,

(1.6) lim sup
x→+∞

(
Ii(x)x− σ

∫ x

ε

Ii(y) dy

)
≤ C;

(H5) There exist 0 ≤ β < 2 and C > 0 such that

lim inf
x→+∞

1

xβ

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
> −C

uniformly for t ∈ (0, 1);

(H6) There exists C > 0 such that

(1.7) lim
x→+∞

1

x1−α

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
= +∞

uniformly for t ∈ (0, 1), and for each i = 1, . . . , p,

(1.8) lim sup
x→+∞

(
Ii(x)x− 2

∫ x

ε

Ii(y) dy

)
≤ C;
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(H7) There exists C > 0 such that

(1.9) lim
x→+∞

1

x1−α

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
= −∞

uniformly for t ∈ (0, 1), and for each i = 1, . . . , p,

(1.10) lim inf
x→+∞

(
Ii(x)x− 2

∫ x

ε

Ii(y) dy

)
≥ −C;

(H8) For each i = 1, . . . , p, there exist ai ≥ 0, bi ≥ 0 and γi ∈ [0, 1] (among

which γi = 1 for i ∈ A ⊆ {1, . . . , p} and γi ∈ [0, 1) for i ∈ B :=

{1, . . . , p} \ A) such that Ii(x) ≥ −aixγi − bi, for x ∈ [ε,+∞).

Let

h(r) :=

r2 − r1−α +

p∑
i=1

min
[0,r]

Ii(x)x

max
[0,1]×[0,r]

f(t, x)x
and

∑
i∈A

ai = 0 if A = ∅.

Main results of this paper are presented as follows.

Theorem 1.1. The problem (1.1) is solvable in the following cases:

(a) If (H1) holds, then the problem (1.1) has a positive classical solution

provided the assumption (H8) holds and

0 < λ <
π2

a

(
1−

∑
i∈A

ai

)
;

(b) If (H2) holds, then

(b1) the problem (1.1) has a positive classical solution provided the as-

sumptions (H5) and (H8) hold, and

0 < λ < 1−
∑
i∈A

ai;

(b2) the problem (1.1) has a positive classical solution provided the as-

sumptions (H6) and (H8) hold with bi ≡ 0 and A = {1, . . . , p},
and

0 < λ = 1−
∑
i∈A

ai;

(b3) the problem (1.1) has two positive classical solutions provided the

assumptions (H7) and (H8) hold, and 1 ≤ λ < sup
r>0

h(r);

(c) If (H3) holds, then the problem (1.1) has two positive classical solutions

provided the assumption (H8) holds and π2/b < λ < sup
r>0

h(r);

(d) If (H4) holds, then the problem (1.1) has two positive classical solutions

provided (σ − 1 + α)/(τ(1− α)) < λ < sup
r>0

h(r).
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Example 1.2. Consider the following singular impulsive problem

(1.11)


−u′′(t)− 1

u1/3(t)
= λf(t, u(t)), t ∈ (0, t1) ∪ (t1, 1),

∆(u′(t1)) = I1(u(t1)),

u(0) = u(1) = 0.

In view of Theorem 1.1, we have the following results:

(a) When f(t, x) = x and I1(x) = −x/2, the problem (1.11) has a positive

classical solution provided 0 < λ < π2/2;

(b1) When f(t, x) = π2x and I1(x) = −1/2x, the problem (1.11) has a

positive classical solution provided 0 < λ < 1/2;

(b2) When f(t, x) = π2x − x1/2 + 1 and I1(x) = −x/2, the problem (1.11)

has a positive classical solution provided λ = 1/2;

(b3) When f(t, x) = π2x+x2/3−60x1/3 +55 and I1(x) = −0.1x, the problem

(1.11) has two positive classical solutions provided 1 ≤ λ < sup
r>0

h(r). In fact,

max
[0,1]×[0,4.2]

f(t, x)x = [f(t, x)x]|x=4.2 ≈ 9.4490 and h(4.2) ≈ 1.4047;

(c) When f(t, x) = 10x − 400x1/10 + 420 and I1(x) = −0.1x, the problem

(1.11) has two positive classical solutions provided π2/10 < λ < sup
r>0

h(r). In

fact, (H3) holds with b = 10− ϑ for any ϑ ∈ (0, 10− π2),

max
[0,1]×[0,7.2]

f(t, x)x = [f(t, x)x]|x=7.2 ≈ 33.8656 and h(7.2) ≈ 1.2676;

(d) When f(t, x) = ex and I1(x) = −x3/2 + 2x− 1.2, the problem (1.11) has

two positive classical solutions provided 0 < λ < sup
r>0

h(r). In fact, (H4) holds

for any τ > 0 and σ = 2.4. What is more,

min
[0,2.6]

I1(x)x = [I1(x)x]|x=2.6 ≈ −0.5002 and h(2.6) ≈ 0.1248.

The remaining part of this paper is organized as follows. In the next section,

some fundamental facts are given. Proof of the main results are presented in

Section 3.

Throughout this paper, by C we denote a positive constant whose value may

vary from line to line.

2. Preliminaries

We recall some facts which will be used in the proof of our main result. Let

H1
0 (0, 1) be the Sobolev space endowed with the norm

‖u‖H1
0

:=

(∫ 1

0

|u′(t)|2 + |u(t)|2 dt
)1/2

,
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and H1
0 (0, 1) is a reflexive Banach space. It is a consequence of Poincaré’s in-

equality that

(2.1)

∫ 1

0

|u(t)|2 dt ≤ 1

λ1

∫ 1

0

|u′(t)|2 dt,

where λ1 = π2 is the first eigenvalue of the Dirichlet problem

−u′′(t) = λu(t), t ∈ (0, 1); u(0) = u(1) = 0,

and the associated eigenfunction of λ1 is sin(πt). So

(2.2)

∫ 1

0

sin′(πt)u′(t) dt = π2

∫ 1

0

sin(πt)u(t) dt, for any u ∈ H1
0 (0, 1).

In view of (2.1), we know that

‖u‖ :=

(∫ 1

0

|u′(t)|2 dt
)1/2

is equivalent to the norm ‖u‖H1
0

in H1
0 (0, T ). Let ‖u‖∞ := max

t∈[0,1]
|u(t)|. Then,

for u ∈ H1
0 (0, T ), we have

(2.3) ‖u‖∞ ≤ ‖u‖.

In fact, for any t ∈ [0, 1], using Höder’s inequality,

|u(t)| =
∣∣∣∣u(0) +

∫ t

0

u′(s) ds

∣∣∣∣ ≤ ∫ 1

0

|u′(t)| dt ≤
(∫ 1

0

|u′(t)|2 dt
)1/2

.

Lemma 2.1 ([15, Theorem 1.1]). If ϕ is sequentially weakly lower semi-con-

tinuous on a reflexive Banach space X and has a bounded minimizing sequence,

then ϕ has a minimum on X.

Definition 2.2. Let ϕ : X → R differentiable and c ∈ R. We say that ϕ

satisfies the (PS)c-condition if the existence of a sequence {uk} in X such that

ϕ(uk)→ c, ϕ′(uk)→ 0

as k →∞, implies that c is a critical value of ϕ.

Lemma 2.3 ([15, Theorem 4.4]). Let X be a Banach space, ϕ : X → R
a function bounded from below and differentiable on X. Assume that ϕ satisfies

the (PS)c-condition with c = inf
X
ϕ, then ϕ has a minimum on X.

Lemma 2.4 ([25, Theorem 38.A]). For the functional F : M⊆X→ [−∞,+∞]

with M 6= ∅, min
u∈M

F (u) = α has a solution in case the following hold:

(a) X is a real reflexive Banach space;

(b) M is bounded and weak sequentially closed ;

(c) F is sequentially weakly lower semi-continuous on M .
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Lemma 2.5 ([15, Theorem 4.10]). Let E be a Banach space and ϕ ∈ C1(E,R).

Assume that there exist u0 ∈ E, u1 ∈ E and a bounded open neighbourhood Ω of

u0 such that u1 ∈ E \ Ω and inf
∂Ω
ϕ > max{ϕ(u0), ϕ(u1)}. Let

Γ = {g ∈ C([0, 1], E) : g(0) = u0, g(1) = u1} and c = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)).

If ϕ satisfies the (PS)c-condition, then c is a critical value of ϕ and

c > max{ϕ(u0), ϕ(u1)}.

Definition 2.6. ϕ satisfies the Cerami condition, denoted by (C), if any

sequence {xn} in X such that {ϕ(xn)} is bounded and ‖ϕ′(xn)‖(1 + ‖xn‖)→ 0

has a convergent subsequence.

The Cerami condition [8] is weaker than the Palais–Smale condition and

it was used by Bartolo, Benci and Fortunato to prove a deformation lemma

(Theorem 1.3 in [7]) which allows rather general minimax results.

Consider 
−u′′(t) = fε,λ(t, u(t)), t ∈ Ω,(2.4a)

∆(u′(ti)) = Ii,ε(u(ti)), i = 1, . . . , p,(2.4b)

u(0) = u(1) = 0,(2.4c)

following the ideas of the variational approach to impulsive differential equations

of [16], [22], multiply (2.4a) by v ∈ H1
0 (0, T ) and integrate between 0 and 1, we

find that

(2.5)

∫ 1

0

u′′(t)v(t) dt = −
∫ 1

0

fε,λ(t, u(t))v(t) dt.

In view of (2.4c), we have∫ 1

0

u′′(t)v(t) dt =

∫ t1

0

u′′(t)v(t) dt(2.6)

+

p−1∑
i=1

∫ ti+1

ti

u′′(t)v(t) dt+

∫ 1

tp

u′′(t)v(t) dt

=−
∫ 1

0

u′(t)v′(t) dt+

p∑
i=1

[
u′(t−i )− u′(t+i )

]
v(ti),

which combined with (2.4b) and (2.5) yields to

(2.7)

∫ 1

0

u′(t)v′(t) dt+

p∑
i=1

Ii,ε(u(ti))v(ti) =

∫ 1

0

fε,λ(t, u(t))v(t) dt.

Considering the aforementioned equality, we introduce the following concept

of a weak solution for (2.4).

Definition 2.7. A function u ∈ H1
0 (0, 1) is a weak solution of (2.4) if (2.7)

holds for any v ∈ H1
0 (0, 1).
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Definition 2.8. A function u ∈ C[0, 1] satisfying the boundary condition

(2.4c) is said to be a classical solution of (2.4) if, for each i = 0, . . . , p, u|(ti,ti+1) ∈
C2(ti, ti+1) satisfies the equation (2.4a) on (ti, ti+1), the limits u′(t−i ) and u′(t+i )

exist for each i = 1, . . . , p and satisfy the impulsive condition (2.4b).

Lemma 2.9. If u ∈ H1
0 (0, 1) is a weak solution of (2.4), then u is a classical

solution of (2.4).

Proof. It follows from u ∈ H1
0 (0, 1) that u ∈ C[0, 1] satisfies (2.4c). For

each i = 0, . . . , p, let

Ki := {v ∈ H1
0 (0, 1) | v(t) = 0 for every t ∈ [0, ti] ∪ [ti+1, 1]},

by (2.7), we find that

(2.8)

∫ ti+1

ti

u′(t)v′(t) dt =

∫ ti+1

ti

fε,λ(t, u(t))v(t) dt, for any v ∈ Ki.

Since fε,λ ∈ C((0, 1) × R), we find that (u′)′|(ti,ti+1) ∈ C(ti, ti+1) and thus

u|(ti,ti+1) ∈ C2(ti, ti+1). Integrating (2.8) by parts we obtain∫ ti+1

ti

(
u′′(t) + fε,λ(t, u(t))

)
v(t) dt = 0, for any v ∈ Ki.

and hence

−u′′(t) = fε,λ(t, u(t)), for a.e. t ∈ (ti, ti+1),

which combined with fε,λ ∈ C((0, 1)× R) and u|(ti,ti+1) ∈ C2(ti, ti+1) yields to

(2.9) −u′′(t) = fε,λ(t, u(t)), for any t ∈ (ti, ti+1).

For any x1, x2 ∈ (ti, ti+1), we find that

|u′(x2)− u′(x1)| = |u′′(ξ)||x2 − x1| ≤ C|x2 − x1|,

for some ξ ∈ (x1, x2). Thus for any ε > 0, there exists δ = ε/C such that

|u′(x2)− u′(x1)| < ε, for any x1, x2 ∈ (ti, ti + δ).

Thus u′(t+i ) exists. Similarly u′(t−i+1) exists. For any v ∈ H1
0 (0, T ), multiply

(2.9) by v and integrate between 0 and 1, by (2.6), we obtain∫ 1

0

fε,λ(t, u(t))v(t) dt = −
∫ 1

0

u′′(t)v(t)dt =

∫ 1

0

u′(t)v′(t)dt+

p∑
i=1

∆(u′(ti))v(ti),

which combined with (2.7) yields to
p∑
i=1

∆(u′(ti))v(ti) =

p∑
i=1

Ii,ε(u(ti))v(ti).

Since v is arbitrary, we deduce that ∆(u′(ti)) = Ii,ε(u(ti)) for each i = 1, . . . , p.�

Lemma 2.10. If u ∈ H1
0 (0, 1) is a classical solution of (2.4), then u(t) ≥ ϕε(t)

for any t ∈ [0, 1], and hence u is a positive classical solution of (1.1).
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Proof. Suppose that there exists a t∗ ∈ (0, 1) such that

(2.10) u(t∗) < ε t∗(1− t∗).

By fε,λ > 0 and Ii,ε ≤ 0, we have u′(t) is decreasing on Ω and u′(t+i ) ≤ u′(t−i ),

so u(t) is concave on [0, 1]. To prove the claim, suppose that 0 ≤ x1 < x2 <

x3 ≤ 1. Then there exists y1 ∈ (x1, x2) such that

(2.11)
u(x2)− u(x1)

x2 − x1
≥ u′(y1).

In fact, when there is no impulse in (x1, x2), we have (2.11) holds clearly; when

x1 < s1 < . . . < sm < x2, where {s1, . . . , sm} ⊆ {t1, . . . , tp}, then there exist

k1 ∈ (x1, s1), . . . , km ∈ (sm−1, sm) and km+1 ∈ (sm, x2) such that

u(x2)− u(x1)

x2 − x1
=
x2 − sm
x2 − x1

u′(km+1) +

m∑
j=2

sj − sj−1

x2 − x1
u′(kj) +

s1 − x1

x2 − x1
u′(k1)

≥ x2 − sm
x2 − x1

u′(km+1) +

m∑
j=2

sj − sj−1

x2 − x1
u′(km+1) +

s1 − x1

x2 − x1
u′(km+1) = u′(km+1).

Similarly there exists y2 ∈ (x2, x3) such that

u(x3)− u(x2)

x3 − x2
≤ u′(y2).

Since u′(t) is decreasing on Ω and u′(t+i ) ≤ u′(t−i ), we have u′(y1) ≥ u′(y2). So

u(x3)− u(x2)

x3 − x2
≤ u(x2)− u(x1)

x2 − x1
.

Since u(t) is concave on [0, 1] and u(0) = u(1) = 0, we have u(t) ≥ 0 for

t ∈ [0, 1]. Furthermore, there exists a t∗ ∈ [0, 1] such that u(t∗) = ‖u‖∞. When

t∗ ∈ (0, 1), by concavity of u(t) on [0, 1] and u(0) = u(1) = 0, we have

u(t) = u

((
1− t

t∗

)
0 +

t

t∗
t∗
)

≥
(

1− t

t∗

)
u(0) +

t

t∗
u(t∗) =

t

t∗
u(t∗) ≥ t(1− t)u(t∗),

for any t ∈ [0, t∗], and

u(t) = u

(
1− t
1− t∗

t∗ +
t− t∗

1− t∗
1

)
≥ 1− t

1− t∗
u(t∗) +

t− t∗

1− t∗
u(1) =

1− t
1− t∗

u(t∗) ≥ t(1− t)u(t∗),

for any t ∈ [t∗, 1]. When t∗ = 0 or t∗ = 1, we find that ‖u‖∞ = 0, so u(t) ≡ 0.

Thus

(2.12) u(t) ≥ ‖u‖∞t(1− t), for any t ∈ [0, 1].
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In view of (2.10) and (2.12), we have

εt∗(1− t∗) > u(t∗) ≥ ‖u‖∞t∗(1− t∗).

Thus ‖u‖∞ < ε. So it follows from (1.4) that

u′′(t) = −fε,λ(t, u(t)) ≤ −2ε = ϕ′′ε (t), for any t ∈ Ω.

What is more, ∆
[
u′(ti)− ϕ′ε(ti)

]
= Ii,ε(u(ti)) ≤ 0. Thus u′(t)− ϕ′ε(t) is nonin-

creasing on Ω and u′(t+i )− ϕ′ε(t+i ) ≤ u′(t−i )− ϕ′ε(t−i ), so u(t)− ϕε(t) is concave

on [0, 1], which combined with [u(0) − ϕε(0)] = [u(1) − ϕε(1)] = 0 yields to

u(t) ≥ ϕε(t) on [0,1], which contradicts to (2.10). �

Consider the functional Φ ∈ C1(H1
0 ;R) defined by

Φ(u) :=
1

2

∫ 1

0

|u′(t)|2 dt−
∫ 1

0

Fε,λ(t, u(t)) dt+ φ(u)

where

Fε,λ(t, x) :=

∫ x

ε

fε,λ(t, y) dy and φ(u) :=

p∑
i=1

∫ u(ti)

ε

Ii,ε(x) dx.

And

〈Φ′(u), v〉 =

∫ 1

0

u′(t)v′(t) dt−
∫ 1

0

fε,λ(t, u(t))v(t) dt+

p∑
i=1

Ii,ε(u(ti))v(ti).

Thus critical points of Φ correspond to weak solutions of the problem (2.4). And

it follows from the continuity of fε,λ and Ii,ε that Φ(u) is sequentially weakly

lower semi-continuous on H1
0 (0, T ) as the sum of a convex continuous function

and of two weakly continuous functions.

Notice that fε,λ > 0 and Ii,ε ≤ 0, we have

(2.13) Fε,λ(t, x) = −
∫ ε

x

fε,λ(t, y) dy ≤ 0, (t, x) ∈ (0, 1)× (−∞, ε)

and

(2.14)

∫ x

ε

Ii,ε(y) dy ≥ 0, x ∈ (−∞, ε).

For (t, x) ∈ (0, 1)× [ε,+∞), we have fε,λ(t, x) = λf(t, x) + x−α, so

(2.15) fε,λ(t, x)x− 2Fε,λ(t, x) = Gε,λ(t, x), (t, x) ∈ (0, 1)× [ε,+∞)

and

(2.16)
∂

∂x

[
Fε,λ(t, x)

x2

]
=

1

x3
Gε,λ(t, x), (t, x) ∈ (0, 1)× [ε,+∞),

where

Gε,λ(t, x) := λ

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
− 1 + α

1− α
x1−α +

2ε1−α

1− α
.
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If we assume (H2), then

(2.17) lim
x→+∞

Fε,λ(t, x)

x2
= lim
x→+∞

(
1

2
λ
f(t, x)

x
+

1

2

1

x1+α

)
=

1

2
λπ2,

which combined with (2.16) yields to

(2.18)
1

2
λπ2 − Fε,λ(t, x)

x2
=

∫ +∞

x

∂

∂y

[
Fε,λ(t, y)

y2

]
dy =

∫ +∞

x

1

y3
Gε,λ(t, y) dy,

for (t, x) ∈ (0, 1)× [ε,+∞).

If we assume (H8), then∫ x

ε

Ii,ε(y) dy =

∫ x

ε

Ii(y) dy ≥ − ai
γi + 1

xγi+1 − bix− C, x ∈ [ε,+∞),

which combined with (2.14) yields to

φ(u) =
∑

u(ti)≥ε

∫ u(ti)

ε

Ii,ε(x) dx+
∑

u(ti)<ε

∫ u(ti)

ε

Ii,ε(x) dx(2.19)

≥ −
p∑
i=1

ai
γi + 1

‖u‖γi+1
∞ − C‖u‖∞ − C.

Lemma 2.11. Assume (H2) and (H8) hold, then Φ satisfies (C) provided (H6)

or (H7) holds.

Proof. Suppose that {un} is a sequence in H1
0 (0, 1) such that

(2.20) {Φ(un)} is bounded and ‖Φ′(un)‖(1 + ‖un‖)→ 0.

By a standard argument it suffices to show that {un} is bounded in H1
0 (0, 1)

when verifying (C). In view of Ii,ε ≤ 0 and fε,λ > 0, we have

‖u−n ‖2 = −〈Φ′(un), u−n 〉−
∫
un(t)<0

fε,λ(t, un(t))u−n (t) dt+

p∑
i=1

Ii,ε(un(ti))u
−
n (ti)

≤ ‖Φ′(un)‖‖u−n ‖.

So ‖u−n ‖ is bounded, and hence there exists a constant C0 > 0 such that

(2.21) un(t) ≥ −u−n (t) ≥ −C0, for any t ∈ [0, 1].

To prove {un} is bounded in H1
0 (0, 1) we argue by contradiction. Suppose

that ‖un‖ → +∞. Let

(2.22) vn(t) :=
un(t)

‖un‖
=
u+
n (t)

‖un‖
− u−n (t)

‖un‖
.

Since H1
0 (0, 1) is a reflexive Banach space, ‖vn‖ = 1 and ‖u−n ‖ is bounded,

passing to a subsequence if necessary (denoted again by {vn}), we have {vn}
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converges to some v ≥ 0 weakly in H1
0 (0, 1), strongly in L2(0, 1), and {vn}

converges uniformly to the v on [0, 1] (see Proposition 1.2 in [15]). Then

(2.23) 1−
∫ 1

0

v′n(t)v′(t) dt =
1

‖un‖

∫ 1

0

fε,λ(t, un(t))[vn(t)− v(t)] dt

+
1

‖un‖
〈Φ′(un), vn − v〉 −

1

‖un‖

p∑
i=1

Ii,ε(un(ti))[vn(ti)− v(ti)].

For un(t) < ε, it follows from (1.4) that

(2.24)

∣∣∣∣ 1

‖un‖
fε,λ(t, un(t))[vn(t)− v(t)]

∣∣∣∣ ≤ 1

‖un‖
(
ϕ−αε (t) + λCε

)
|vn(t)− v(t)|.

In view of (H2) and f ∈ C([0, 1]× [0,+∞)), we find that

(2.25) f(t, x) ≤ 3π2

2
x+ C, (t, x) ∈ (0, 1)× [ε,+∞),

then, for un(t) ≥ ε, we have∣∣∣∣ 1

‖un‖
fε,λ(t, un(t))[vn(t)− v(t)]

∣∣∣∣ =
1

‖un‖
(
λf(t, un(t)) + u−αn (t)

)
|vn(t)− v(t)|

≤
(
λ

3π2

2
+ (λC + ε−α)

1

‖un‖

)
|vn(t)− v(t)|,

which combined with (2.24) yields to

lim
n→+∞

1

‖un‖
fε,λ(t, un(t))[vn(t)− v(t)] = 0, for a.e. t ∈ (0, 1)

and ∣∣∣∣ 1

‖un‖
fε,λ(t, un(t))[vn(t)− v(t)]

∣∣∣∣ ≤ C(ϕ−αε (t) + 1
)
∈ L1(0, 1),

for large n. So

(2.26)
1

‖un‖

∫ 1

0

fε,λ(t, un(t))[vn(t)− v(t)] dt→ 0 as n→∞.

It follows from Ii,ε ∈ C(R; (−∞, 0]) and (H8) that

|Ii,ε(x)| =


|Ii(x)| ≤ aixγi + bi, x ≥ ε,
|Ii(x)| ≤ max

[0,ε]
|Ii(x)|, ϕε(ti) ≤ x < ε,

|Ii(ϕε(ti))|, x < ϕε(ti),

and hence |Ii,ε(x)| ≤ ai|x|γi + C for x ∈ R, then∣∣∣∣ 1

‖un‖

p∑
i=1

Ii,ε(un(ti))[vn(ti)− v(ti)]

∣∣∣∣ ≤∑
i∈A

ai|vn(ti)− v(ti)|

+
∑
i∈B

ai
|vn(ti)− v(ti)|
‖un‖1−γi

+ C

p∑
i=1

|vn(ti)− v(ti)|
‖un‖

,
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thus
1

‖un‖

p∑
i=1

Ii,ε(un(ti))[vn(ti)− v(ti)]→ 0 as n→∞.

In view of the above display and (2.26), passing to the limit in (2.23) gives

‖v‖ = 1, so there exists a Ω1 ⊆ (0, 1) such that meas(Ω1) > 0 and v(t) > 0 for

t ∈ Ω1, and hence un(t) = vn(t)‖un‖ → +∞ for t ∈ Ω1.

In the following, two cases are considered, respectively.

Case 1. (H6) holds. By (1.8), for each i = 1, . . . , p there exists x1 > ε such

that

Ii(x)x− 2

∫ x

ε

Ii(y)dy ≤ C, for any x ≥ x1,

which combined with the continuity of Ii,ε and (2.21) yields to

(2.27) Ii,ε(un(ti))un(ti)− 2

∫ un(ti)

ε

Ii,ε(x) dx ≤ C,

It follows from (1.7) that

lim
x→+∞

[
λ

1

x1−α

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
− 1 + α

1− α

]
x1−α = +∞

uniformly for t ∈ (0, 1), which combined with (2.15) yields to

(2.28) lim
x→+∞

(
fε,λ(t, x)x− 2Fε,λ(t, x)

)
= +∞ uniformly for t ∈ (0, 1).

In view of (2.15), (2.28) and f ∈ C([0, 1]× [0,+∞)), we have

(2.29) fε,λ(t, x)x− 2Fε,λ(t, x) ≥ −C, (t, x) ∈ (0, 1)× [ε,+∞).

So it follows from fε,λ > 0, (1.4) and (2.29) that

(2.30) fε,λ(t, x)x− 2Fε,λ(t, x)

≥


−(ϕ−αε (t) + λCε)|x|, (t, x) ∈ (0, 1)× [−∞, 0),

0, (t, x) ∈ (0, 1)× [0, ε),

−C, (t, x) ∈ (0, 1)× [ε,+∞),

then we have∫
v=0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt

≥
∫
v=0, un<0

−(ϕ−αε (t) + λCε)|u−n (t)| dt+

∫
v=0, 0≤un<ε

0 dt+

∫
v=0, un≥ε

−C dt

≥ −
∫ 1

0

(
ϕ−αε (t) + λCε

)
dt‖u−n ‖ − C,

which combined with the boundedness of {‖u−n ‖} yields that

(2.31)

∫
v=0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt ≥ −C.
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In view of (2.28), (2.30) and Fatou’s lemma, we have∫
v>0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt→ +∞ as n→∞.

So, by the above display and (2.31), we have∫ 1

0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt =

∫
v>0

+

∫
v=0

→ +∞

as n→∞, which combined with (2.27) yields to

1

2
〈Φ′(un), un〉 − Φ(un) = −1

2

∫ 1

0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt

+
1

2

p∑
i=1

(
Ii,ε(un(ti))un(ti)− 2

∫ un(ti)

ε

Ii,ε(x) dx

)
→ −∞

as n→∞, which contradicts (2.20).

Case 2. (H7) holds. By (1.10), for each i = 1, . . . , p there exists x1 > ε such

that

Ii(x)x− 2

∫ x

ε

Ii(y) dy ≥ −C, for any x ≥ x1,

which combined with the continuity of Ii,ε and (2.21) yields to

(2.32) Ii,ε(un(ti))un(ti)− 2

∫ un(ti)

ε

Ii,ε(x) dx ≥ −C,

It follows from (1.9) that

lim
x→+∞

[
λ

1

x1−α

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
− 1 + α

1− α

]
x1−α = −∞

uniformly for t ∈ (0, 1), which combined with (2.15) yields to

(2.33) lim
x→+∞

fε,λ(t, x)x− 2Fε,λ(t, x) = −∞ uniformly for t ∈ (0, 1).

In view of (2.15), (2.33) and f ∈ C([0, 1]× [0,+∞)), we have

(2.34) fε,λ(t, x)x− 2Fε,λ(t, x) ≤ C, (t, x) ∈ (0, 1)× [ε,+∞).

So it follows from fε,λ > 0, (1.4) and (2.34) that

(2.35) fε,λ(t, x)x− 2Fε,λ(t, x)

≤


2(ϕ−αε (t) + λCε)(ε+ |x|), (t, x) ∈ (0, 1)× [−∞, 0),

C(ϕ−αε (t) + 1), (t, x) ∈ (0, 1)× [0, ε),

C, (t, x) ∈ (0, 1)× [ε,+∞),

which combined with ‖u−n ‖ is bounded yields to

(2.36)

∫
v=0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt ≤ C.
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In view of (2.33), (2.35) and Fatou’s lemma, we have∫
v>0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt→ −∞ as n→∞.

In view of the above display and (2.36), we have,∫ 1

0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt =

∫
v>0

+

∫
v=0

→ −∞

as n→∞, which combined with (2.32) yields to

1

2
〈Φ′(un), un〉 − Φ(un) = −1

2

∫ 1

0

fε,λ(t, un(t))un(t)− 2Fε,λ(t, un(t)) dt

+
1

2

p∑
i=1

(
Ii,ε(un(ti))un(ti)− 2

∫ un(ti)

ε

Ii,ε(x) dx

)
→ +∞

as n→∞, which contradicts (2.20). �

3. Main results

In this section, the existence and the multiplicity of weak solutions for the

problem (2.4) will be discussed, respectively.

3.1. Existence of one solution.

Theorem 3.1. Suppose that (H1) and (H8) hold, then the problem (2.4) has

a weak solution w ∈ H1
0 (0, 1) such that Φ(w) = inf

H1
0 (0,T )

Φ(u) provided

(3.1) 0 < λ <
π2

a

(
1−

∑
i∈A

ai

)
.

Proof. It follows from assumption (H1) that

Fε,λ(t, x) =

∫ x

ε

λf(t, y) + y−α dy ≤ 1

2
aλx2 + Cx+ Cx1−α + C,

for (t, x) ∈ (0, 1)× [ε,+∞), which combined with (2.1), (2.3) and (2.13) yields to∫ 1

0

Fε,λ(t, u(t)) dt =

∫
u(t)<ε

Fε,λ(t, u(t)) dt+

∫
u(t)≥ε

Fε,λ(t, u(t)) dt

≤ aλ

2

∫ 1

0

u2(t) dt+ C‖u‖∞ + C‖u‖1−α∞ + C

≤ aλ

2π2
‖u‖2 + C‖u‖+ C‖u‖1−α + C.

In view of the above inequality and (2.19), we have

Φ(u) ≥ 1

2

(
1− aλ

π2
−
∑
i∈A

ai

)
‖u‖2 −

∑
i∈B

ai
γi + 1

‖u‖γi+1 − C‖u‖ − C‖u‖1−α − C,

so Φ(u)→ +∞ as ‖u‖ → ∞ by (3.1). Thus Lemma 2.1 implies the result. �
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Theorem 3.2. Suppose that (H2), (H5) and (H8) hold, then the problem

(2.4) has a weak solution w ∈ H1
0 (0, 1) such that Φ(w) = inf

H1
0 (0,T )

Φ(u) provided

(3.2) 0 < λ < 1−
∑
i∈A

ai.

Proof. In view of (H5) and f ∈ C([0, 1]× [0,+∞)), we find that

f(t, x)x− 2

∫ x

ε

f(t, y) dy ≥ −Cxβ − C, (t, x) ∈ (0, 1)× [ε,+∞),

which combined with (2.18) yields to

1

2
λπ2 − Fε,λ(t, x)

x2
≥ −C

(
1

x2−β +
1

x2
+

1

x1+α

)
, (t, x) ∈ (0, 1)× [ε,+∞).

Thus it follows from the above inequality and (2.13) that

−
∫ 1

0

Fε,λ(t, u(t)) dt = −
∫
u(t)≥ε

Fε,λ(t, u(t)) dt−
∫
u(t)<ε

Fε,λ(t, u(t)) dt

≥ −1

2
λπ2

∫ 1

0

u2(t) dt− C‖u‖β∞ − C‖u‖1−α∞ − C,

which combined with (2.1), (2.3) and (2.19) yields to

Φ(u) ≥ 1

2

(
1−λ−

∑
i∈A

ai

)
‖u‖2−

∑
i∈B

ai
γi + 1

‖u‖γi+1−C‖u‖β−C‖u‖1−α−C‖u‖−C.

So Φ(u)→ +∞ as ‖u‖ → ∞ by (3.2). Thus Lemma 2.1 implies the result. �

Theorem 3.3. Suppose that (H2), (H6) and (H8) hold with bi ≡ 0 and

A = {1, . . . , p}, then the problem (2.4) has a weak solution w ∈ H1
0 (0, 1) such

that Φ(w) = inf
H1

0 (0,T )
Φ(u) provided 0 < λ = 1−

∑
i∈A

ai.

Proof. In view of (2.14) and (H8) holds with bi ≡ 0 and A = {1, . . . , p},

(3.3) φ(u) =

( ∑
u(ti)<ε

+
∑

u(ti)≥ε

)∫ u(ti)

ε

Ii,ε(x) dx ≥ −1

2

p∑
i=1

ai‖u‖2∞ − C.

For (t, x) ∈ (0, 1)× [ε,+∞), it follows from (2.29) that

∂

∂x

[
Fε,λ(t, x)

x2

]
=

1

x3

(
fε,λ(t, x)x− 2Fε,λ(t, x)

)
≥ −Cx−3,

which combined with (2.17) yields to

1

2
λπ2 − Fε,λ(t, x)

x2
=

∫ +∞

x

∂

∂y

[
Fε,λ(t, y)

y2

]
dy ≥ −C 1

x2
.
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Then it follows from the above inequality and (2.13) that

−
∫ 1

0

Fε,λ(t, u(t)) dt = −
∫
u(t)≥ε

Fε,λ(t, u(t)) dt−
∫
u(t)<ε

Fε,λ(t, u(t)) dt

≥ −1

2
λπ2

∫ 1

0

u2(t) dt− C,

which combined with (2.1) and (3.3) yields to

Φ(u) ≥ 1

2

(
1− λ−

∑
i∈A

ai

)
‖u‖2 − C = −C.

What is more, Lemma 2.11 implies that Φ satisfies (C). So it follows from

Lemma 2.3 that the result holds. �

3.2. Existence of two solutions. Let Br be the open ball in H1
0 (0, T )

with radius r > 0 and centered at 0 and let ∂Br and Br denote the boundary

and closure of Br, respectively.

Lemma 3.4. If 0 < λ < sup
r>0

h(r), then there exist r0 ∈ (0,+∞) and w1 ∈ Br0
such that Φ(w1) = min

Br0

Φ(u) and

(3.4) Φ(w1) < inf
∂Br0

Φ(u).

Proof. By λ < sup
r>0

h(r), there exists a r0 ∈ (0,+∞) such that

(3.5) λ max
[0,1]×[0,r0]

f(t, x)x < r2
0 − r1−α

0 +

p∑
i=1

min
[0,r0]

Ii(x)x.

Since Br0 is a closed convex set, Br0 is weak sequentially closed. Thus it follows

from Lemma 2.4 that there exists a w1 ∈ Br0 such that Φ(w1) = min
Br0

Φ(u), and

hence w1 is a weak solution of (2.4). So, by Lemmas 2.9 and 2.10, w1 is a positive

classical solution of (1.1). Suppose w1 ∈ ∂Br0 , then

−
∫ 1

0

w′′1 (t)w1(t) dt−
∫ 1

0

w1−α
1 (t) dt = λ

∫ 1

0

f(t, w1(t))w1(t) dt,

which combined with (2.3) and (2.6) yields to

r2
0 = ‖w1‖2 =

∫ 1

0

w′1(t)w′1(t) dt

= λ

∫ 1

0

f(t, w1(t))w1(t) dt+

∫ 1

0

w1−α
1 (t) dt−

p∑
i=1

Ii(w1(ti))w1(ti)

≤ λ max
[0,1]×[0,r0]

f(t, x)x+ r1−α
0 −

p∑
i=1

min
[0,r0]

Ii(x)x,
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which contradicts (3.5). So w1 ∈ Br0 and Φ(w1) < Φ(u) for any u ∈ ∂Br0 , and

hence (3.4) holds. �

In view of Lemma 3.4, we will only need to check that Φ satisfies (C) and

Φ(r sin(πt))→ −∞ as r → +∞, then Lemma 2.5 will give a second critical point

w2 ∈ H1
0 (0, 1) such that

Φ(w2) = inf
g∈Γ

max
s∈[0,1]

Φ(g(s)),

where Γ = {g ∈ C([0, 1], H1
0 (0, 1)) : g(0) = w1, g(1) = r sin(πt)}.

Since Ii,ε ∈ C(R; (−∞, 0]), we find that, for any r > 0,

φ(r sin(πt)) =
∑

r sin(πti)≤ε

+
∑

r sin(πti)>ε

∫ r sin(πti)

ε

Ii,ε(x) dx(3.6)

≤
∑

r sin(πti)≤ε

∫ r sin(πti)

ε

Ii,ε(x) dx

≤
p∑
i=1

max
0≤x≤ε

{−Ii,ε(x)}ε ≤ C.

Theorem 3.5. Suppose that (H2), (H7) and (H8) hold, then the problem (2.4)

has two weak solutions in H1
0 (0, T ) provided 1 ≤ λ < sup

r>0
h(r).

Proof. It follows from (1.9) that

lim
x→+∞

[
λ

1

x1−α

(
f(t, x)x− 2

∫ x

ε

f(t, y) dy

)
− 1 + α

1− α

]
x1−α = −∞

uniformly for t ∈ (0, 1), then Gε,λ(t, x) → −∞ as x → +∞ uniformly for

t ∈ (0, 1). So

(3.7) lim
x→+∞

x2

∫ +∞

x

1

y3
Gε,λ(t, y) dy = −∞ uniformly for t ∈ (0, 1).

For (t, x) ∈ (0, 1)× [ε,+∞), it follows from (2.18) that

1

2
π2x2 − Fε,λ(t, x) =

1

2
π2(1− λ)x2 + x2

∫ +∞

x

1

y3
Gε,λ(t, y) dy.

So λ ≥ 1 and (3.7) imply that

(3.8) lim
x→+∞

(
1

2
π2x2 − Fε,λ(t, x)

)
= −∞ uniformly for t ∈ (0, 1).

Furthermore, for (t, x) ∈ (0, 1)× [ε,+∞), it follows from (2.34) that

∂

∂x

[
Fε,λ(t, x)

x2

]
=

1

x3

(
fε,λ(t, x)x− 2Fε,λ(t, x)

)
≤ C 1

x3
,

which combined with (2.17) yields

1

2
λπ2 − Fε,λ(t, x)

x2
=

∫ +∞

x

∂

∂y

[
Fε,λ(t, y)

y2

]
dy ≤ C 1

x2
.
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So λ ≥ 1 implies that

(3.9)
1

2
π2x2 − Fε,λ(t, x) ≤ C, (t, x) ∈ (0, 1)× [ε,+∞),

For (t, x) ∈ (0, 1)× [0, ε), by (1.4) we have

1

2
π2x2 − Fε,λ(t, x) ≤ 1

2
π2ε2 + ϕ−αε (t)ε+ λCεε ∈ L1(0, 1),

which combined with (3.8) and (3.9) yields to

(3.10)

∫ 1

0

1

2
π2(r sin(πt))2 − Fε,λ(t, r sin(πt)) dt→ −∞ as r → +∞.

In view of (2.2), we have that

Φ(r sin(πt)) =

∫ 1

0

1

2
π2(r sin(πt))2 − Fε,λ(t, r sin(πt))dt+ φ(r sin(πt)).

So it follows from (3.6) and (3.10) that Φ(r sin(πt)) → −∞ as r → +∞. By

Lemma 2.11, Φ satisfies (C). �

Theorem 3.6. Suppose that (H3) and (H8) hold, then the problem (2.4) has

two weak solutions in H1
0 (0, T ) provided π2/b < λ < sup

r>0
h(r).

Proof. By (1.4) and (H3), we find that

Fε,λ(t, x) ≥

−εϕ
−α
ε (t)− C, (t, x) ∈ (0, 1)× [0, ε),

1

2
λbx2 − λCx+

1

1− α
x1−α − C, (t, x) ∈ (0, 1)× [ε,+∞).

It follows from the above inequality, (2.2), (3.6) and λ > π2/b that

Φ(r sin(πt)) ≤ 1

2
π2

∫
r sin(πt)<ε

(r sin(πt))2 dt

+
1

2
π2

∫
ε≤r sin(πt)

(r sin(πt))2 dt+ ε

∫
r sin(πt)<ε

ϕ−αε (t) dt

−
∫
ε≤r sin(πt)

1

2
λb(r sin(πt))2 dt+

∫
ε≤r sin(πt)

λCr sin(πt) dt

−
∫
ε≤r sin(πt)

1

1− α
(r sin(πt))1−α dt+ C

≤ 1

2
(π2 − λb)

∫
ε≤r sin(πt)

(sin(πt))2dtr2 + Cr + Cr1−α + C,

so Φ(r sin(πt))→ −∞ as r → +∞.

Notice that the role of (2.25) could be replaced by (H3); then we proceed

similarly as in the proof of Lemma 2.11. Suppose that {un} is a sequence in

H1
0 (0, 1) such that (2.20) holds, then ‖u−n ‖ is bounded and (2.21) holds. If

‖un‖ → +∞, define vn by (2.22), passing to a subsequence if necessary (denoted

again by {vn}), we have {vn} converges to some v ≥ 0 weakly in H1
0 (0, 1),
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strongly in L2(0, 1), and uniformly on [0, 1]. And there exists a Ω1 ⊆ (0, 1) such

that meas(Ω1) > 0 and v(t) > 0 for t ∈ Ω1.

It follows from fε,λ > 0, (H3) and x−α is bounded on [ε,+∞) that

λbx− fε,λ(t, x)

≤

λbx, (t, x) ∈ (0, 1)× (−∞, ε),
λbx− λf(t, x)− x−α ≤ λC + C, (t, x) ∈ (0, 1)× [ε,+∞),

which combined with (2.21) yields to∫ 1

0

(
λbun(t)− fε,λ(t, un(t))

)
sin(πt) dt

≤
∫
un(t)<ε

λbun(t) sin(πt) dt+

∫
ε≤un(t)

(λC + C) sin(πt) dt ≤ C.

In view of (2.2), (2.21), Ii,ε ≤ 0 and the above inequality, we have

(λb− π2)

∫ 1

0

vn(t) sin(πt) dt =
1

‖un‖

∫ 1

0

λbun(t) sin(πt)− u′n(t) sin′(πt) dt

=
1

‖un‖

∫ 1

0

(
λbun(t)− fε,λ(t, un(t))

)
sin(πt) dt

+
1

‖un‖

p∑
i=1

Ii,ε(un(ti)) sin(πti)−
1

‖un‖
〈Φ′(un), sin(πt)〉

≤ 1

‖un‖
C
(
1 + ‖Φ′(un)‖

)
.

Passing to the limit in the above inequality gives

(λb− π2)

∫ 1

0

v(t) sin(πt) dt ≤ 0.

which is impossible since λ > π2/b and v(t) > 0 for t ∈ Ω1 with meas(Ω1) > 0.

Thus Φ satisfies (C). �

Theorem 3.7. Suppose that (H4) holds, then the problem (2.4) has two weak

solutions in H1
0 (0, T ) provided

(3.11)
σ − 1 + α

τ(1− α)
< λ < sup

r>0
h(r).

Proof. By (1.5) and (3.11), there exists x0 > ε such that, for (t, x) ∈
(0, 1)× [x0,+∞)

λ

x1−α

(
σ

∫ x

ε

f(t, y) dy − f(t, x)x

)
≤ −σ − 1 + α

1− α
,

and hence

λ
1

x1−α

(
σ

∫ x

ε

f(t, y) dy − f(t, x)x

)
+
σ − 1 + α

1− α
≤ 0 <

1

x1−α
σε1−α

1− α
,
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So, for (t, x) ∈ (0, 1)× [x0,+∞), we have

(3.12) σFε,λ(t, x)− fε,λ(t, x)x

= λ

(
σ

∫ x

ε

f(t, y) dy − f(t, x)x

)
+
σ − 1 + α

1− α
x1−α − σε1−α

1− α
< 0.

Then

(3.13) Fε,λ(t, x) ≥ Fε,λ(t, x0)

xσ0
xσ, (t, x) ∈ (0, 1)× [x0,+∞).

Since fε,λ > 0 and x0 > ε, we find that Fε,λ(t, x0) > 0 and

−Fε,λ(t, x) ≤

ε(ϕ−αε (t) + λCε), (t, x) ∈ (0, 1)× [0, ε),

0, (t, x) ∈ (0, 1)× [ε, x0),

by (1.4), then

−
∫
r sin(πt)<x0

Fε,λ(t, r sin(πt)) dt ≤ C.

So, it follows from the above inequality, (2.2), (3.6) and (3.13) that

Φ(r sin(πt)) ≤ 1

2
π2

∫ 1

0

(sin(πt))2 dtr2

−
∫
r sin(πt)<x0

Fε,λ(t, r sin(πt)) dt

−
∫
x0≤r sin(πt)

Fε,λ(t, r sin(πt)) dt+ C

≤Cr2 −
∫
x0≤r sin(πt)

Fε,λ(t, x0)

xσ0
(sin(πt))σ dtrσ + C,

and hence Φ(r sin(πt))→ −∞ as r → +∞.

We proceed similarly as in the proof of Lemma 2.11. Suppose that {un} is

a sequence in H1
0 (0, 1) such that (2.20) holds, then ‖u−n ‖ is bounded and (2.21)

holds. By (1.6), for each i = 1, . . . , p there exists x1 > ε such that

Ii(x)x− σ
∫ x

ε

Ii(y) dy ≤ C, for any x ≥ x1,

which combined with the continuity of Ii,ε and (2.21) yields to

(3.14) Ii,ε(un(ti))un(ti)− σ
∫ un(ti)

ε

Ii,ε(x) dx ≤ C, for any n.



582 L. Bai — J.J. Nieto

In view of fε,λ > 0, f ∈ C([0, 1]× [0,+∞)), (1.4) and (3.12), we have

σFε,λ(t, x)− fε,λ(t, x)x

≤



(ϕ−αε (t) + λCε)|x|, (t, x) ∈ (0, 1)× (−∞, 0],

0, (t, x) ∈ (0, 1)× (0, ε),

σ

∫ x

ε

λf(t, y) + y−α dy ≤ C, (t, x) ∈ (0, 1)× [ε, x0],

0, (t, x) ∈ (0, 1)× [x0,+∞),

which combined with ‖u−n ‖ is bounded yields to∫ 1

0

σFε,λ(t, un(t))− fε,λ(t, un(t))un(t) dt ≤ C, for any n.

In view of the above inequality, (2.20) and (3.14) yields to(
σ

2
− 1

)
‖un‖2 =σΦ(un)− 〈Φ′(un), un〉

+

∫ 1

0

σFε,λ(t, un(t))− fε,λ(t, un(t))un(t) dt

+

p∑
i=1

(
Ii,ε(un(ti))un(ti)− σ

∫ un(ti)

ε

Ii,ε(x) dx

)
≤ C.

So {un} is bounded in H1
0 (0, 1) and hence Φ satisfies (C). �

Proof of Theorem 1.1. In view of Lemma 2.9 and Lemma 2.10, the results

follow from Theorem 3.1–3.7. �
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