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EXISTENCE OF POSITIVE GROUND SOLUTIONS

FOR BIHARMONIC EQUATIONS

VIA POHOŽAEV–NEHARI MANIFOLD

Liping Xu — Haibo Chen

Abstract. We investigate the following nonlinear biharmonic equations

with pure power nonlinearities:{
42u−4u + V (x)u = up−1u in RN ,

u > 0 for u ∈ H2(RN ),

where 2 < p < 2∗ = 2N/(N − 4). Under some suitable assumptions
on V (x), we obtain the existence of ground state solutions. The proof relies

on the Pohožaev–Nehari manifold, the monotonic trick and the global com-

pactness lemma, which is possibly different to other papers on this problem.
Some recent results are extended.

1. Introduction

This paper is to study the existence of positive ground state solutions of the

following biharmonic equation with pure power nonlinearities:

(EQ)

42u−4u+ V (x)u = up−1u in RN ,
u > 0 for u ∈ H2(RN ),
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where 42 := 4(4) is the biharmonic operator, 2 < p < 2∗ = 2N/(N − 4) and

N > 4. The potential V (·) is continuous on RN , and satisfies the following

hypotheses:

(v1) 〈∇V (x), x〉 ∈ L∞(RN )∪L2∗/(2∗−2)(RN ) and 4V (x)+ 〈∇V (x), x〉 ≥ 0 for

almost every x ∈ RN .

(v2) 0 ≤ V (x) ≤ V (∞) := lim inf
|x|→∞

V (x) < +∞ and V (x) 6= V (∞), and the

inequality is strict in a subset of positive measure.

The biharmonic equations arise in the study of traveling waves in suspension

bridges (see [8], [13], [21]) and the study of the static deflection of an elastic plate

in a fluid. In the last decades there are many results for biharmonic equations.

We refer the reader to [1], [3], [10], [11], [24], [31] for the case of bounded domain,

and [2], [6], [5], [15], [23], [26]–[29] for the case of unbounded domain. For

example, on bounded domains, An and Liu [3] used the mountain pass theorem

to get the existence results for the following problem

(1.1)

42u+ c4u = g(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N > 4) is a smooth bounded domain, c is a constant. The

multiplicity result of sign-changing solutions for (1.1) has been proved in [31] by

using the sign-changing critical theorems. Compared with the case of bounded

domain, the case of unbounded domain seems to be more complicate. For ex-

ample, under the following conditions:

(v3) V (x) ∈ C(RN ) and V (x) ≥ 0 for all x ∈ RN ,

(v4) for each b > 0, |{x ∈ RN : V (x) ≤ b}| < +∞, where | · | is the Lebesgue

measure,

Yin and Wu [11] obtained a sequence of high energy solutions of the following

problem:

(1.2)

42u−4u+ V (x)u = f(x, u) in RN ,
u ∈ H2(RN ).

Corresponding results for (1.2) were further improved by Y. Ye and C. Tang

[27] and W. Zhang, X.Tang and J. Zhang [29]. The condition (v4) was used in

T. Bartsch and Z. Wang [4], which shows that V (x) must be coercive. But there

are a great number of functions not satisfying the coerciveness. Replacing (v4)

by a more general condition:

(v4)′ There exists b > 0, |{x ∈ RN : V (x) ≤ b}| < +∞, where | · | is the

Lebesgue measure.

J. Liu, S. Chen and X. Wu in [18] showed the existence and multiplicity results

of equation (1.2), while a positive parameter needs to be added to the equation.
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Recently, [16] obtained the existence and multiplicity of solutions of a class

of biharmonic equations with critical nonlinearity in RN . Under (v3) and (v4),

G. Che and H. Chen [7] proved that the problem (EQ) has at least energy nodal

solution by Nehari manifold, and also obtained other nontrivial solutions under

suitable conditions.

The similar hypotheses on V (x) as above (v1)–(v2) are introduced in [14],

[19], [20], [30] and have physical meaning. Under the conditions, L. Zhao, G. Li

and Z. Liu in [30], [14], [19], [20] obtained the ground solutions of Schrödinger–

Maxwell equations and Kirchhoff type equations, respectively. Moreover, there

are indeed many functions satisfying (v1)–(v2). For instance, V (x) = V0 −
1/(τ(|x|+ 1)), where V0 > 1 and τ > 4 are positive constants.

Motivated by the works just described, the purpose of this paper is to es-

tablish the existence of positive ground state solutions for the problem (EQ) by

using Pohožaev–Nehari manifold method, combined with the monotone trick of

L. Jeanjean (see [12]), concentration-compactness (due to [17], [25]) and a global

compactness Lemma (see Lemma 4.5 below). To the best of our knowledge,

in the literature there are few results on the existence of positive ground state

solutions for (EQ) by Pohožaev–Nehari manifold method (see Section 3 below).

The main results are the following theorems.

Theorem 1.1. Assume that V (x) is a positive constant, then the problem

(EQ) has a positive ground state solution for any 3 ≤ p < 2∗ − 1 and N > 4.

Remark 1.2. If V (x) is a positive constant, motivated by [30], [14], [19], [20],

we use the constrained minimization on a Pohožaev–Nehari manifold to prove

Theorem 1.1. We prove that such a manifold has two perfect characteristics: it

is a natural constraint for the reduced functional and it contains every solutions

of the problem (EQ).

Theorem 1.3. If V (x) satisfies (v1)–(v2), assume that N > 4 with 3 ≤ p <
2∗ − 1, then the problem (EQ) has a positive ground state solution.

Remark 1.4. The similar conditions like (v1)–(v2) were introduced in [14],

[19], [20], [30]. Theorem 1.3 extends the main results in [14], [19], [20], [30] to

the biharmonic equations. And the hypothesis V (x) ≥ 0 in (v2) could also be

replaced by: there exists a constant ν such that

ν = inf
u∈H2(RN )\{0}

∫
RN

(|4u|2 + |∇u|2 + V (x)|u|2) dx∫
RN

u2 dx

> 0,

which is proposed in [30].

Now we state our main ideas for the proof of the results. To prove Theo-

rem 1.1, assuming that V (x) is a positive constant, we look for a minimizer of
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the reduced functional restricted to a Pohožaev–Nehari manifold M (the defi-

nition of M can be found in Section 3 below), which is obtained by combining

a Pohožaev type identity and the usual Nehari manifold. If V (x) is not a con-

stant, it is difficult to get the boundedness of any (PS) sequence. Inspired by [14],

[19], [20], [30], we use Jeanjean’s result [12] to construct a special bounded (PS)

sequence. At last, in order to obtain the compactness of bounded (PS ) sequence

of energy functional, we use concentration-compactness principle of Lions [17] to

establish a new global compactness lemma, which help us to complete the proof

of Theorem 1.3. Moreover, this paper gives a unified method to deal with the

existence of ground state solution to the problem (EQ) for all 3 ≤ p < 2∗ − 1.

The paper is as follows. In Section 2, we introduce a variational setting

and present some preliminaries results. In Section 3, we consider the constant

potential case and give the proof Theorem 1.1. In Section 4, we will establish

a global compactness lemma and give the proof of Theorem 1.3.

Notations. Throughout this paper, we denote the norms of u in D2,2
0 (RN )

and Ls(RN )(1 ≤ s ≤ ∞) by

‖u‖2
D2,2

0
:=

∫
RN
|4u|2 dx and ‖u‖s :=

(∫
RN
|u|s dx

)1/s

,

respectively. Here D2,2
0 (RN ) is the completion of the space C∞0 (RN ) under the

above norm. We also have to use the notations the best Sobolev constant

S := inf
u∈D2,2

0 (RN )\{0}

∫
RN
|4u|2dx(∫

RN
|u|2

∗
dx

)2/2∗

and

BR(z) := {x ∈ RN : |x− z| ≤ R}.

We use Ci (i = 1, 2, . . .) to denote various positive constants.

2. Preliminaries

Let

E =

{
u ∈ H(2)(RN ) :

∫
RN

(|4u|2 + |∇u|2 + V (x)|u|2) dx < +∞
}

be equipped with the inner product and norm

〈u, v〉 :=

∫
RN

(4u4v +∇u∇v + V (x)uv) dx, ‖u‖ = 〈u, u〉1/2.

Weak solutions to (EQ) correspond to critical points of the following functional

(2.1) IV (u) =
1

2

∫
RN

(|4u|2dx+ |∇u|2 + V (x)|u|2) dx− 1

p+ 1

∫
RN
|u|p+1 dx.
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This is a well-defined C1-functional whose derivative is given by, for all u, v ∈ E,

(2.2) 〈I ′V (u), v〉 =

∫
RN

(4u4v +∇u∇v + V (x)uv) dx−
∫
RN
|u|p−1uv dx.

Now we give some preliminary results, which plays a significant role in the

proof of our results.

Proposition 2.1 (see [12]). Let (X, ‖ · ‖) be a Banach space and h ⊂ R+ an

interval. Consider the family of C1 functionals on X

Iδ(u) = A(u)− δB(u), δ ∈ h

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞. We

assume there are two points v1, v2 in X such that

cδ = inf
γ∈Γδ

max
t∈[0,1]

Iδ(γ(t)) > max{Iδ(v1), Iδ(v2)}, for all δ ∈ h,

where Γδ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}. Then, for almost every

δ ∈ h, there is a sequence {un} ⊂ X such that

(a) {un} is bounded,

(b) Iδ(un)→ cδ,

(c) I ′δ(un)→ 0 in the dual X−1 of X.

Moreover, the map δ → cδ is continuous from the left.

We introduce a Pohožaev identity for the problem (EQ).

Lemma 2.2. Under the assumptions (v1)–(v2), let u be a solution of (EQ)

in H2(RN ), then

(2.3)
N − 4

2

∫
RN
|4u|2 dx+

N − 2

2

∫
RN
|∇u|2 dx+

N

2

∫
RN

V (x)|u|2 dx

+
1

2

∫
RN
〈∇V (x), x〉|u|2 dx− N

P + 1

∫
RN
|u|P+1 dx = 0.

The proof is standard, so we omit it (see [9]).

If V (x) is a positive constant V , the Pohožaev identity can be rewritten as

follows:

(2.4)
N − 4

2

∫
RN
|4u|2 dx+

N − 2

2

∫
RN
|∇u|2 dx

+
N

2

∫
RN

V |u|2 dx− N

P + 1

∫
RN
|u|P+1 dx = 0.

The following concentration-compactness principle is due to P. Lions (see [17]).

Lemma 2.3 ([17], [25]). Let R > 0, 2 ≤ q < 2∗ = 2N/(N − 4) with N > 4.

Assume {un} is bounded in Lq(RN ),

lim
n→∞

sup
y∈RN

∫
BR(y)

|u|q dx = 0,
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then un → 0 in Ls(RN ) for s ∈ (2, 2∗).

Lemma 2.4. For all t ≥ 0, define function

g(t) : R+ → R, g(t) = C1t
N−2 + C2t

N + C3t
N+2 − C4t

N+p+1,

where C1, . . . , C4 are positive constants, and N > 4. Then, we claim that g has

a unique critical point which corresponds to its maximum.

Proof. We borrow an idea from [22]. Indeed, since N > 4 and 2 < p <

2∗−1, g(t)→ −∞ as t→ +∞ and g(t) is positive for t > 0 small. Consequently,

g has a maximum. We now show that this is the only critical point of g. Consider

some derivatives of g:

g′(t) =C1(N − 2)tN−3 + C2Nt
N−1 + C3(N + 2)tN+1 − C4(N + p+ 1)tN+p,

g′′(t) =C1(N − 2)(N − 3)tN−4 + C2N(N − 1)tN−2

+ C3(N + 2)(N + 1)tN − C4(N + p+ 1)(N + p)tN+p−1,

g′′′(t) =C1(N − 2)(N − 3)(N − 4)tN−5

+ C2N(N − 1)(N − 2)tN−3 + C3(N + 2)(N + 1)NtN−1

− C4(N + p+ 1)(N + p)(N + P − 1)tN+p−2.

Note that g′′′(t) → −∞ as t → +∞ and is positive for t > 0 small since N > 4

and 2 < p < 2∗−1. Then, there exists t1 > 0 such that g′′′(t1) = 0 and g′′′(t) > 0

for t < t1. Then, for t < t1, g′′(t) is increasing. Since g′′(0) = 0, there exists

at least 0 < t < t1 such that g′′(t) > 0 and g′′(t) decreases, tending to −∞ for

t > t1. Consequently, there exists t2 > t1 such that g′′(t2) = 0 and g′′(t) > 0 for

t < t2. Repeating the above argument, there exists t3 > t2 such that g′(t3) = 0

and g′(t) > 0 for t < t3. Therefore, t3 is the unique critical point of g(t), which

implies the lemma. �

3. Constant potential case

In this section we will assume that V ( · ) is a positive constant V and give

the proof of Theorem 1.1. That is to say that the purpose of this section is to

show that the ground state solution can be obtained on a suitable manifold. In

view of V (x) = V , the functional IV is reduced to be

(3.1) I(u) =
1

2

∫
RN

(|4u|2 + |∇u|2 + V |u|2) dx− 1

p+ 1

∫
RN
|u|p+1 dx.

Next we try to use the constrained minimization on a suitable manifold to prove

Theorem 1.1. To solve the difficulty is to prove the boundedness of the mini-

mizing sequence on usual Nehari manifold. Inspired by [14], [22], we combine



Solutions for Biharmonic Equations 547

the Nehari manifold and the corresponding Pohožaev type identity. In fact, we

introduce the following manifold

M := {u ∈W 1,P (RN ) \ {0} : G(u) = 0},

where

G(u) =
N − 2

2

∫
RN
|4u|2 dx+

N

2

∫
RN
|∇u|2 dx+

N + 2

2

∫
RN

V |u|p dx

− p+ 1 +N

p+ 1

∫
RN
|u|p+1 dx = 〈I ′(u), u〉+ P (u),

here P (u) is defined by (2.4).

Using an idea from [14], [19], [20], [22], [30], we can establish the following

properties of M .

Lemma 3.1.

(a) Assume 2 < p < 2∗ − 1, for any u ∈ H2(RN ) \ {0}, then there ex-

ists a unique number t0 = t0(u) > 0 such that ut0 = t0u(x/t0) ∈ M .

Moreover, I(ut0) = max
t≥0

I(ut).

(b) 0 /∈ ∂M and inf I|M > 0.

(c) For any u ∈ M, G′(u) 6= 0, that is M is a C1 manifold.

(d) M is a nature constraint of I. That is every critical point of I|M is

a critical point of I.

Proof. (a) For any u ∈ H2(RN ) \ {0} and t > 0, set ut(x) = tu(x/t).

Consider

γ(t) = I

(
tu

(
x

t

))
=

1

2
tN−2

∫
RN
|4u|2 dx+

1

2
tN
∫
RN
|∇u|2 dx

+
1

2
tN+2

∫
RN

V |u|2 dx− 1

p+ 1
tN+p+1

∫
RN
|u|p+1 dx.

It follows from Lemma 2.4 that γ(t) has a unique critical point t0 > 0 corre-

sponding to its maximum. Then γ′(t0) = 0 and γ(t0) = max
t≥0

I(ut). Thus

N − 2

2
tN−3
0

∫
RN
|4u|2 dx+

N

2
tN−1
0

∫
RN
|∇u|2 dx

+
N + 2

2
tN+1
0

∫
RN

V |u|2 dx− N + p+ 1

p+ 1
tN+p
0

∫
RN
|u|p+1 dx = 0,

which implies G(ut0) = 0 and ut0 ∈M . (a) immediately follows.

(b) Clearly, for any u ∈ M, using the Sobolev embedding theorem, we have

0 =
N − 2

2

∫
RN
|4u|2 dx+

N

2

∫
RN
|∇u|2 dx+

N + 2

2

∫
RN

V |u|2 dx

− p+ 1 +N

p+ 1

∫
RN
|u|p+1 dx ≥ N − 2

2
‖u‖2 − C5(p+ 1 +N)

p+ 1
‖u‖p+1,
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which means 0 /∈ ∂M for ‖u‖ small enough. This shows that M is complete.

Take any u ∈M , we then deduce that

(N + 2)I(u) = (N + 2)I(u)−G(u)

= 2

∫
RN
|4u|2 dx+

∫
RN
|∇u|2 dx+

(p− 1)

p+ 1

∫
RN
|u|p+1 dx > 0.

This shows that inf I|M > 0 since p > 2.

(c) Reasoning by contradiction, suppose that G′(u) = 0. In a weak sense,

the equation can be written as

(3.2) (N − 2)42u−N4u+ (N + 2)V u− (N + p+ 1)|u|p−1u = 0.

Then, the following Pohožaev identity holds:

(3.3)
(N − 2)(N − 4)

2

∫
RN
|4u|2 dx+

(N − 2)N

2

∫
RN
|∇u|2 dx

+
N(N + 2)

2

∫
RN

V |u|2 dx− N(N + p+ 1)

p+ 1

∫
RN
|u|p+1 dx = 0.

Let∫
RN
|4u|2 dx = α,

∫
RN
|∇u|2 dx = β,

∫
RN

V |u|2 dx = γ,

∫
RN
|u|p+1 dx = τ.

Then, we have the following identity:
N − 2

2
α+

N

2
β +

N + 2

2
γ − p+ 1 +N

p+ 1
τ = 0,

(N − 4)(N − 2)

2
α+

N(N − 2)

2
β +

N(N + 2)

2
γ − N(p+ 1 +N)

p+ 1
τ = 0,

By simple computation, we get α = −Nβ/(2(N − 2)), which is impossible, since

α ≥ 0, β ≥ 0 and N > 4. The proof of (c) is complete.

(d) If u ∈ M and (I|M )′(u) = 0. Thanks to the Lagrange multiplier rule,

there exists λ ∈ R such that I ′(u) +λP ′(u) = 0. We show that λ = 0. As above,

in a weak sense, the equation I ′(u) + λP ′(u) = 0 can be written as

(3.4) [1 + λ(N − 2)]42u− (1 + λN)4u

+ [1 + λ(N + 2)]V u− [1 + λ(N + p+ 1)]|u|p−1u = 0.

Set

1

2

∫
RN
|4u|2 dx = α1,

1

2

∫
RN
|∇u|2 dx = β1,

1

2

∫
RN

V |u|2 dx = γ1,
1

p+ 1

∫
RN
|u|p+1 dx = τ1.
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Arguing as above, we have

(N − 2)α1 +Nβ1 + (N + 2)γ1 − (p+ 1 +N)τ1 = 0,

(N − 4)[1 + λ(N − 2)]α1 + (N − 2)(1 + λN)β1

+N [1 + λ(N + 2)]γ1 −N [1 + λ(p+ 1 +N)]τ1 = 0,

2[1 + λ(N − 2)]α1 + 2(1 + λN)β1

+2[1 + λ(N + 2)]γ1 − (p+ 1)[1 + λ(p+ 1 +N)]τ1 = 0.

The first equation comes from u ∈ M. The second one is the Pohožaev identity

applied to 3.4. The third one holds since I ′(u) + λP ′(u) = 0. By computation,

we get

λ[4(N − 2)α1 + 2Nβ1 + (p− 1)(p+ 1 +N)τ1] = 0.

If λ 6= 0, α1 = −[(p− 1)(p+ 1 +N)τ1 + 2Nβ1]/[4(N − 2)], which is also impos-

sible since α1 > 0, β1 > 0, τ1 > 0, p > 2 and N > 4. Thus we obtain that λ = 0,

which completes the proof of (d). �

Lemma 3.2. If N > 4 and 2 < p < 2∗ − 1, then there exists a minimizer u

of infM I. Moreover, I ′(u) = 0 in H2(RN ).

Proof. The proof is inspired by [22]. For the reader’s convenience, we sketch

it here briefly. The main strategy, based on three steps, is the following.

Step 1. Let {un} ⊂ M be a sequence such that I(un)→ inf
M
I. Next we show

the boundedness of {un}. Indeed, by using un ∈M and (3.1), one has

(p+ 1 +N)I(un) =
p+ 3

2

∫
RN
|4un|2 dx

+
p+ 1

2

∫
RN
|∇un|2 dx+

p− 1

2

∫
RN

V |un|2 dx ≥
p− 1

2
‖un‖2.

Combining with the fact I(un)→ infM I, we conclude the boundedness of {un}.

Step 2. Suppose, passing to a subsequence, that un ⇀ u in H2(RN ). We

will prove that u ∈ M and un → u in H2(RN ). Thus I|M attains its minimum

at u. Denote

an =

∫
RN
|4un|2 dx, bn =

∫
RN
|∇un|2 dx,

cn =

∫
RN

V |un|2 dx, dn =

∫
RN
|un|p+1 dx,

a =

∫
RN
|4u|2 dx, b =

∫
RN
|∇u|2 dx,

c =

∫
RN

V |u|2 dx, d =

∫
RN
|u|p+1 dx,
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a = lim
n→∞

an, b = lim
n→∞

bn,

c = lim
n→∞

cn, d = lim
n→∞

dn.

Passing to an appropriate subsequence, we can suppose that the above limits ex-

ist. Using the compactness of the embedding H2
r (RN ) ↪→ Ls(RN ) for 2 < s < 2∗,

one has d = d. Considering the weak convergence, we have that a ≤ a, b ≤ b

and c ≤ c. We will show that the previous inequalities are equalities.

Suppose on the contrary that a + b + c < a + b + c. Since I(un) → inf I|M
and G(un) = 0, one has

(3.5)


1

2
a+

1

2
b+

1

2
c− 1

p+ 1
d = inf I|M,

N − 2

2
a+

N

2
b+

N + 2

2
c− p+ 1 +N

p+ 1
d = 0.

(b) of Lemma 3.2 means a+ b+ c > ε, where ε > 0 is a constant. Consider the

second equation of (3.4), we obtain that d = d > 0, which means that u cannot

be identically equal to zero. As a result, a > 0, b > 0, c > 0. Define

g(t) =
1

2
atN−2 +

1

2
btN +

1

2
ctN+2 − p+ 1 +N

p+ 1
dtN+p+1,

g(t) =
1

2
atN−2 +

1

2
btN +

1

2
ctN+2 − p+ 1 +N

p+ 1
dtN+p+1.

It follows from Lemma 2.4 that g(t) and g(t) have a unique critical point, corre-

sponding to their maximum. By (3.4), we deduce that max g = inf I|M as t = 1.

Since a + b + c < a + b + c, then, for all t > 0, g(t) < g(t). Suppose that t0 be

the point where the maximum of g is achieved. Thus, g(t0) ≤ max g = inf I|M
and g′(t0) = 0. Defining u0 = t0u(x/t0), one has

I(u0) =
1

2
atN−2

0 +
1

2
btN0 +

1

2
ctN+2

0 − p+ 1 +N

p+ 1
dtN+p+1

0 = g(t0) < inf I|M ,

G(u0) =
N − 2

2
atN−2

0 +
N

2
btN0

+
N + 2

2
ctN+2

0 − p+ 1 +N

p+ 1
dtN+p+1

0 = t0g
′(t0) = 0.

This means that u0 ∈M and I(u0) < inf I|M , a contradiction. Thus a+ b+ c =

a+ b+ c, which implies that un → u and then u ∈ M.

Step 3. We now show that I ′(u) = 0. Thanks to the Lagrange multiplier

rule, there exists λ ∈ R so that I ′(u) + λG′(u) = 0. Just as the proof of (d) in

Lemma 3.1, we can prove that λ = 0. Thus, I ′(u) = 0. �

Proof of Theorem 1.1. If N > 4 and 2 < p < 2∗ − 1, it follows from

Lemma 3.2 that there exists u ∈ M such that I(u) = inf I|M and I ′(u) = 0.
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Then u is a positive critical point of I|M , hence by Lemma 3.1, we see that u is

a positive ground state solution of (EQ) with V (x) = V . �

4. Nonconstant potential case

In this section, the main goal is to show the proof of Theorem 1.3. By

Proposition 2.1, we consider the functional IV,δ : E → R defined by

(4.1) IV,δ(u) =
1

2

∫
RN

(|4u|2 + |∇u|2 + V (x)u2) dx

− δ

p+ 1

∫
RN
|u|p+1dx := A(u)− δB(u)

for u ∈ E, where

A(u) =
1

2

∫
RN

(|4u|2 + |∇u|2 + V (x)|u|2) dx, B(u) =
1

p+ 1

∫
RN
|u|p+1 dx,

for δ ∈ [1/2, 1]. It is clear that this functional is of C1-class and, for every

u, v ∈ E,

(4.2) 〈I ′V,δ(u), v〉 =

∫
RN

(4u4v +∇u∇v + V (x)uv) dx− δ
∫
RN
|u|p−1uv dx.

We also need to consider the associated limit problem

(EQ)∞ 42u−4u+ V (∞)u = δ|u|p−1 u, u ∈ H2(RN ).

It is clear that system (EQ)∞ is the Euler–Lagrange equations of the functional

I∞,δ : E → R defined by

(4.3) I∞,δ(u) =
1

2

∫
RN

(|4u|2 + |∇u|2 + V (∞)|u|2) dx− δ

p+ 1

∫
RN
|u|p+1 dx.

The following lemma ensures that IV,δ has the mountain pass geometry with the

corresponding mountain pass level denoted by cV,δ.

Lemma 4.1. Suppose that (v1)–(v2). If p ∈ (2, 2∗ − 1) and N > 4, then

(a) there exists a v ∈ E \ {0} such that IV,δ(v) < 0 for all δ ∈ [1/2, 1].

(b) for all δ ∈ [1/2, 1]

cV,δ = inf max
γ∈Γ, s∈[0,1]

IV,δ(γ(s)) > max{IV,δ(0), IV,δ(v)},

where Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = v}.

Proof. (a) It follows from (v2) that

IV,δ(u) ≤ I∞,1/2(u) =
1

2

∫
RN

(|4u|2 + |∇u|2 + V (∞)|u|2) dx

− 1

2(p+ 1)

∫
RN
|u|p+1 dx.
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For u ∈ E \ {0} fixed, one has

I∞,1/2

(
tu

(
x

t

))
=

1

2
tN−2

∫
RN
|4u|2 dx+

1

2
tN
∫
RN
|∇u|2 dx

+
1

2
tN+2

∫
RN

V (∞)u2 dx− 1

2(p+ 1)
tN+p+1

∫
RN
|u|p+1 dx.

Since p > 2, we deduce that I∞,1/2(tu(x/t)) → −∞ as t → +∞. Taking

v = tu(x/t), for t large, we have IV,δ(v) ≤ I∞,1/2(v) < 0, which implies (a).

(b) Using the Sobolev embedding theorem, we get

IV,δ(u) ≥ 1

2
‖u‖2 − C6

p+ 1
‖u‖p+1.

Then, we deduce that IV,δ(u) has a strict local minimum in 0 and cV,δ > 0.

Let us introduce the following manifold (see Lemma 3.1 for the details):

M∞,δ = {u ∈ H2(RN ) \ {0} : G∞,δ(u) = 0},

where

G∞,δ =
N − 4

2

∫
RN
|4u|2 dx+

N − 2

2

∫
RN
|∇u|2 dx

+
N

2

∫
RN

V (∞)|u|2 dx− N

p+ 1

∫
RN
|u|p+1 dx.

Set m∞,δ := inf
u∈M∞,δ

I∞,δ(u). According to the above, M∞,δ has some similar

properties to those of the manifold M , such as containing all the nontrivial

critical points of I∞,δ and the conclusion which is similar to Lemma 3.1 and the

following lemma.

Lemma 4.2. If 2 < p < 2∗ − 1, N > 4 and δ ∈ [1/2, 1], m∞,δ is obtained at

some u∞,δ ∈M∞,δ. Moreover, I ′∞,δ(u∞,δ) = 0 and

I∞,δ(u∞,δ) = m∞,δ = inf{I∞,δ(u) : u 6= 0, I ′∞,δ(u) = 0}.

The proof is similar to that of Theorem 1.1 and is omitted here.

Lemma 4.3. Suppose that (v1)–(v2) hold and 2 < p < 2∗ − 1 and N > 4.

Then cV,δ < m∞,δ for any δ ∈ [1/2, 1].

Proof. Assume that V (x) 6= V (∞). We get from Lemma 3.1 that

I∞,δ(u∞,δ) = max
t>0

I∞,δ

(
tu

(
x

t

))
,

where u∞,δ is minimizer of m∞,δ. Thus by choosing v = tu∞,δ(x/t) for t large

in Lemma 4.1, we have

cV,δ ≤ max
t>0

IV,δ

(
tu∞,δ

(
x

t

))
< max

t>0
I∞,δ

(
tu∞,δ

(
x

t

))
= I∞,δ(u∞,δ) = m∞,δ.

�
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To prove that the functional IV,δ satisfies (PS)cV,δ for almost every δ ∈
[1/2, 1], we have to prove the following global compactness lemma. It is inspired

by [14], [19], [20], [30]. It is basic in search for critical points of IV .

Lemma 4.4. Suppose that (v1)–(v2) hold and 3 ≤ p < 2∗ − 1, N > 4. For

every δ ∈ [1/2, 1], let {un} be a bounded (PS)cV,δ sequence for IV,δ. Then there

exist a subsequence of {un}, still denote {un}, u0 and integer η ∈ N ∪ {0},
sequence {yjn}, wj ⊂ H2(RN ) for 1 ≤ j ≤ η such that

(a) un ⇀ u0 with I ′V,δ(u0) = 0.

(b) |yjn| → +∞, |yjn − yin| → +∞ if i 6= j, n→ +∞.
(c) wj 6= 0 and I ′∞,δ(w

j) = 0 for 1 ≤ j ≤ η.

(d)
∥∥∥un − u0 −

η∑
j=1

wj( · − yjn)
∥∥∥→ 0.

(e) IV,δ → IV,δ(u0) +
η∑
j=1

I∞,δ(w
j).

Here we agree that in the case η = 0 the above holds without wj and {yjn}.

Proof. Step 1. We obtain from the fact the boundedness of {un} that, up

to subsequence, there exists u0 such that un ⇀ u0 in E, un → u0 in Lrloc(RN ) for

2 ≤ r < 2∗ and un → u0 almost everywhere in RN . Now we prove I ′V,δ(u0) = 0.

In fact, it suffices to show that 〈I ′V,δ(u0), ϕ〉 = 0 for any fixed ϕ ∈ C∞0 (RN ).

Then, by Hölder,s inequality, for any fixed ϕ ∈ C∞0 (RN ), we have that∣∣∣∣ ∫
RN

(|un|s−1un − |u0|s−1u0)ϕdx

∣∣∣∣(4.4)

≤
∫
RN
|un|s−1|un − u0|ϕdx+

∫
RN

(|un|s−1 − |u0|s−1)|u0ϕ| dx

≤‖ϕ‖∞
(∫

suppφ

|un − u0|s
)1/s

‖un‖s−1
s

+ C‖ϕ‖∞‖u0‖s
(∫

suppφ

|un − u0|s
)(s−1)/s

→ 0,

as n→∞ for s > 2. Since un ⇀ u0 in E, we get

(4.5) 〈un − u0, ϕ〉 → 0 as n→∞.

Using (4.4)–(4.5), one has

(4.6) 〈I ′V,δ(un), ϕ〉 − 〈I ′V,δ(u0), ϕ〉

= 〈un − u0, ϕ〉 − δ
∫
RN

(|un|p−1un − |u0|p−1u0)ϕdx→ 0.

Thus recalling that I ′V,δ(u0) = 0.
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Step 2. Next we show that IV,δ(u0) ≥ 0. Define

a1 =

∫
RN
|4u0|2 dx, b1 =

∫
RN
|∇u0|2 dx,

c1 =

∫
RN

V (x)|u0|2 dx, c1 =

∫
RN
〈∇V (x), x〉|u0|2 dx,

d1 =

∫
RN
|u0|p+1 dx.

Then, by the definition of IV,δ(u0), Lemma 2.2, and 〈I ′V,δ(u0), u0〉 = 0, we get

(4.7)


1

2
a1 +

1

2
b1 +

1

2
c1 −

δ

p+ 1
c1 = IV,δ(u0),

N − 4

2
a1 +

N − 2

2
b1 +

N

2
c1 +

1

2
c1 −

δN

p+ 1
d1 = 0,

a1 + b1 + c1 − δd1 = 0.

From these relations, we deduce that

(4.8) NIV,δ(u0) = b1 +
1

2
(4c1 + c1) +

p(N − 2)− (N + 2)

p+ 1
d1.

Since 3 ≤ p < 2∗ − 1 and N > 4, we have

(4.9) p(N − 2)− (N + 2) ≥ 3(N − 2)− (N + 2) = 2(N − 4) > 0.

It follows from (4.8), (4.9) and (v2) that IV,δ(u0) ≥ 0.

Step 3. Set v1
n = un − u0, then we get v1

n ⇀ 0 in E. Let us define

µ = lim sup
n→∞

sup
y∈RN

∫
RN
|v1
n|2 dx.

Vanishing. If µ = 0, then it follows from Lemma 2.3 that v1
n → 0 in Ls(RN )

for s ∈ (2, 2∗). By similar computation as (4.6), we have

‖v1
n‖2 = 〈I ′V,δ(un), v1

n〉 − 〈I ′V,δ(u0), v1
n〉 → 0,

which means ‖v1
n‖ → 0 as n→∞.

Non-vanishing. If µ > 0, we can find sequence {y1
n} ⊂ RN such that∫

B1(0)

|ṽ1
n|2 dx =

∫
B1(yn)

|v1
n|2 dx >

µ

2
> 0,

where ṽ1
n = v1

n( · + y1
n). Note that ‖ṽ1

n‖ = ‖v1
n( · + y1

n)‖, we see that {ṽ1
n} is

bounded. Going if necessary to a subsequence, we have for a w1 ∈ E such that

ṽ1
n ⇀ w1 in E, ṽ1

n → w1 in Lrloc(RN ) and ṽ1
n → w1 almost everywhere in RN .

Since
∫
B1(0)

|ṽ1
n|2 dx > µ/2, we see that w1 6= 0. Moreover, v1

n ⇀ 0 in E implies

that {y1
n} must be unbounded. Consequently, we may assume that |y1

n| → +∞.
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Now we will prove that I ′∞,δ(w
1) = 0. Similar to the proof of Step 1, for

any fixed ϕ ∈ C∞0 (RN ), it suffices to show that
〈
I ′∞,δ(ṽ

1
n), ϕ

〉
→ 0. By (v2) and

|y1
n| → +∞, for n large enough and any fixed ϕ ∈ C∞0 (RN ), we have

(4.10)

∫
RN

(
V
(
x+ y1

n

)
− V (∞)

)
ṽ1
nϕdx→ 0.

Since v1
n ⇀ 0 in E, one has that

〈
I ′V,δ(v

1
n), ϕ( · − y1

n)
〉
→ 0. That is to say that

(4.11)

∫
RN
4ṽ1

n4ϕdx+

∫
RN
∇ṽ1

n∇ϕdx

+

∫
RN

V (x+ y1
n)ṽ1

nϕdx− δ
∫
RN
|ṽ1
n|p−1ṽ1

nϕdx→ 0

as n → ∞. Thus, combining (4.10) with (4.11), one has
〈
I ′∞,δ(ṽ

1
n), ϕ

〉
→ 0.

Therefore, I ′∞,δ(w
1) = 0.

Now we show that

(4.12) IV,δ(un)− IV,δ(u0)− I∞,δ(un − u0)→ 0.

Indeed, by the Brezis–Lieb lemma, we have

(4.13) ‖v1
n‖2 = ‖un‖2 − ‖u0‖2 + o(1), ‖v1

n‖
p+1
p+1 = ‖un‖p+1

p+1 − ‖u0‖p+1
p+1 + o(1).

In view of (v2) and the Sobolev inequality, we have

(4.14)

∫
RN

(V (x)− V (∞))|un − u0|2 dx→ 0.

And we deduce from (4.1) and (4.3) that

IV,δ(un) − IV,δ(u0)− I∞,δ(un − u0)(4.15)

=
1

2

∫
RN

(|4un|2 − |4u0|2 − |4(un − u0)|2) dx

+
1

2

∫
RN

(|∇un|2 − |∇u0|2 − |∇(un − u0)|2) dx

+
1

2

[ ∫
RN

V (x)(|un|2 − |u0|2) dx−
∫
RN

V (∞)|un − u0|2) dx

]
− δ

p+ 1

∫
RN

(|un|p+1 − |u0|p+1 − |un − u0|p+1) dx.

It follows from (4.13)–(4.15) that (4.12) holds.

Step 4. Set v2
n = v1

n−w1( · −yn), then v2
n ⇀ 0 in E. We get from Brezis–Lieb

Lemma again that

(4.16)

‖4v2
n‖22 = ‖4un‖22 − ‖4u0‖22 − ‖4w1( · − yn)‖22 + o(1),

‖∇v2
n‖22 = ‖∇un‖22 − ‖∇u0‖22 − ‖∇w1( · − yn)‖22 + o(1),

‖v2
n‖
p+1
p+1 = ‖un‖p+1

p+1 − ‖u0‖p+1
p+1 − ‖w1( · − yn)‖p+1

p+1 + o(1),
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(4.17)

∫
RN

V (x)|v2
n|2 dx =

∫
RN

V (x)|un|2 dx

−
∫
RN

V (x)|u0|2 dx−
∫
RN

V (x)|w1( · − yn)|2 dx+ o(1).

Using (4.16)–(4.17), we can similarly deduce that

(4.18)


IV,δ(v

2
n) = IV,δ(un)− IV,δ(u0)− I∞,δ(w1) + o(1),

I∞,δ(v
2
n) = IV,δ(v

1
n)− I∞,δ(w1) + o(1),

〈I ′V,δ(v2
n), v2

n〉 = 〈I ′∞,δ(un), un〉 − 〈I ′V,δ(u0), u0〉
−〈I ′∞,δ(w1), w1〉+ o(1) = o(1).

Using (4.12) and (4.18), one has

IV,δ(un) = IV,δ(u0) + I∞,δ(v
1
n) + o(1)(4.19)

= IV,δ(u0) + I∞,δ(v
2
n) + I∞,δ(w

1) + o(1).

It follows from (b) of Lemma 3.1 that I∞,δ(w
1) ≥ 0. Then, we get from (4.8)

that

(4.20) IV,δ(v
2
n) = cV,δ − IV,δ(u0)− I∞,δ(w1) + o(1) ≤ cV,δ.

Repeating the same type of arguments explored in Step 3, set

µ1 = lim sup
n→∞

sup
y∈RN

∫
RN
|v2
n|2 dx.

If vanishing occurs, then ‖v2
n‖ → 0 in E. Thus Lemma 4.4 holds with j = 1.

If v2
n is non-vanishing, then there exists a sequence {y2

n} and w2 ∈ E such that

ṽ2
n = v2

n( · +y2
n) ⇀ w2 in E and I ′∞,δ(w

2) = 0. Furthermore, v2
n ⇀ 0 in E means

that |y2
n| → +∞ and |y1

n − y2
n| → +∞. By iterating this techniques we obtain

vjn = vj−1
n − wj−1 with j ≥ 1 such that

vjn → wj , I ′∞,δ(w
j) = 0,

and sequences yjn ⊂ RN such that |yjn| → +∞ and |yin − yjn| → +∞ if i 6= j as

n→∞, and using the properties of the weak convergence, we have

(4.21)



‖un‖2 − ‖u0‖2 −
j−1∑
k=1

‖wk( · − ykn)‖2

=

∥∥∥∥un − u0 −
j−1∑
k=1

wk( · − ykn)

∥∥∥∥2

+ o(1),

IV,δ(un)→ IV,δ(u0) +

j−1∑
k=1

I∞,δ(w
k−1) + I∞,δ(v

j
n).

Since {un}is bounded in E, (4.21) implies that the iteration stops at some finite

index η + 1. Therefore vη+1
n → 0 in E. And we can verify that conclusions (d)

and (e) hold by (4.21). �
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Lemma 4.5. Assume that (v1)–(v2) hold, 3 ≤ q < 2∗−1 and N > 4. Let {un}
be a bounded (PS)cV,δ sequence of IV,δ. Then there exists a nontrivial uV,δ ∈ E
such that I ′V,δ(uV,δ) = 0 and IV,δ(uV,δ) = cV,δ for almost all δ ∈ [1/2, 1].

Proof. For δ ∈ [1/2, 1], let u∞,δ be the minimizer of m∞,δ. Then by Lem-

ma 4.3, we have

(4.22) cV,δ < m∞,δ.

It follows from Lemma 4.4 that there exist uV,δ and integer η ∈ N∪{0}, sequence

{yjn}, wj ⊂ H2(RN ) for 1 ≤ j ≤ η such that

(4.23) I ′V,δ(uV,δ) = 0, un ⇀ uV,δ, IV,δ(un)→ IV,δ(uV,δ) +

η∑
j=1

I∞,δ(w
j),

where wj is the critical point of I∞,δ. Define

(4.24)

a2 =

∫
RN
|4uV,δ|2 dx, b2 =

∫
RN
|∇uV,δ|2 dx,

c2 =

∫
RN

V (x)|uV,δ|2 dx, c2 =

∫
RN
〈∇V (x), x〉|uV,δ|2 dx,

d2 = λ

∫
RN
|uV,δ|p+1 dx.

Then, using the definition of IV,δ(uV,δ), Lemma 2.2 and 〈I ′V,δ(uV,δ), uV,δ〉 = 0,

one has 

1

2
a2 +

1

2
b2 +

1

2
c2 −

δ

p+ 1
d2 = IV,δ(uV,δ),

N − 4

2
a2 +

N − 2

2
b2 +

N

2
c2 +

1

2
c2 −

δN

p+ 1
d2 = 0,

a2 + b2 + c2 − δd2 = 0.

Similar to the arguments of (4.8), we also have

NIV,δ(uV,δ) = b2 +
1

2
(4c2 + c2) +

p(N − 2)− (N + 2)

p+ 1
d2 ≥ 0

since 3 ≤ p < 2∗ − 1, N > 4 and (v1). If η 6= 0, then by (4.23)

cV,δ = IV,δ(uV,δ) +

η∑
j=1

I∞,δ(w
j) ≥ m∞,δ,

which contradicts to (4.22). So η = 0, which implies un → uV,δ in E and

IV,δ(uV,δ) = cV,δ. �

Proof of Theorem 1.3. The main strategy, based on two steps, is the

following.

Step 1. It follows from Proposition 2.1, Lemma 4.1 that, for almost every δ ∈
[1/2, ] there exists a bounded (PS)cV,δ sequence for IV,δ. Then Lemma 4.5 implies
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that there exists a nontrivial critical point uV,δ ∈ E for IV,δ and IV,δ(uV,δ) = cV,δ.

Choose δn → 1 such that IV,δn has a critical point uV,δn , still denoted by {un}.
Now we show that {un} is bounded in E. Similar to (4.24), we denote that

an =

∫
RN
|4un|2 dx, bn =

∫
RN
|∇un|2 dx,

cn =

∫
RN

V (x)|un|2 dx, cn =

∫
RN
〈∇V (x), x〉|un|2 dx,

dn = λ

∫
RN
|un|p+1dx.

Then 

1

2
an +

1

2
bn +

1

2
cn −

δn
p+ 1

dn = cV,δn ,

N − 4

2
an +

N − 2

2
bn +

N

2
cn +

1

2
cn −

δnN

p+ 1
dn = 0,

an + bn + cn − δndn = 0.

From these relations, one has

(4.25) (p− 1)(an + bn + cn) = (p+ 1)cV,δ ≤ cV,1/2,

which implies that an + bn + cn is bounded. That is, {un} is bounded in E.

Therefore, using the fact that the map δ → cV,δ is left-continuous (see Proposi-

tion 2.1), we have

(4.26) lim
n→∞

IV (un) = lim
n→∞

{
IV,δn(un) + (δn − 1)

[
1

p+ 1

∫
RN
|un|p+1 dx

]}
= lim
n→∞

cV,δn = cV,1

and

(4.27) lim
n→∞

〈I ′V (un), ψ〉 = lim
n→∞

{
〈I ′V,δn(un), ψ〉+ (δn − 1)

[ ∫
RN
|un|p dx

]}
= 0.

(4.26) and (4.27) show that {un} is a bounded (PS)cV,1 sequence for IV := IV,1.

Then by Lemma 4.5, there exists a nontrivial critical point u0 ∈ E for IV and

IV (u0) = cV,1.

Now we prove the existence of a ground state solution for (EQ). Set

mV := inf{IV (u) : u 6= 0, I ′V (u) = 0}.

As in the proof of Step 2 of Lemma 4.4, we can see that every critical point of

IV has nonnegative energy. Thus 0 ≤ mV ≤ IV (u0) < cV,1 < +∞. Let {un}
be a sequence of nontrivial critical points of IV satisfying IV (un)→ mV . Since

IV (un) is bounded, using the similar arguments as (4.25), we can conclude that

{un} is bounded (PS)mV sequence of IV . Similar arguments in Lemma 4.5, there

exists a nontrivial u∗ ∈ E such that IV (u∗) = mV . �
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