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POINTWISE ESTIMATES IN THE FILIPPOV LEMMA

AND FILIPPOV–WAŻEWSKI THEOREM

FOR FOURTH ORDER DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel — Andrzej Fryszkowski

Abstract. In this work we give a generalization of the Filippov–Ważewski

Theorem to the fourth order differential inclusions in a separable complex
Banach space X

Dy = y′′′′ − (A2 +B2)y′′ +A2B2y ∈ F (t, y),

with the initial conditions in c ∈ [0, T ]

(0.1) y(c) = α, y′(c) = β, y′′(c) = γ, y′′′(c) = δ,

We assume that the multifunction F : [0, T ]×X c(X) is Lipschitz contin-

uous in y with the integrable Lipschitz constant l( · ), while A2, B2 ∈ B(X)

are the infinitesimal generators of two cosine families of operators. The
main result is the following version of Filippov Lemma:

Theorem. Let y0 ∈ W 4,1 = W 4,1([0, T ],X) be such function with (0.1)

that
dist(Dy0(t), F (t, y0(t))) ≤ p0(t) a.e. in [c, d] ⊂ [0, T ],

where p0 ∈ L1[0, T ]. Then there are σ0 (depending on p0) and ϕ such that

for each ε > 0 there exists a solution y ∈ W 4,1 of the above problem such

that almost everywhere in t ∈ [c, d] we have |Dy(t)−Dy0(t)| ≤ σ0(t),

|y(t)− y0(t)| ≤ (ϕ ∗c σ0)(t), |y′(t)− y′0(t)| ≤ (ϕ′ ∗c σ0t)(t),

|y′′(t)− y′′0 (t)| ≤ (ϕ′′ ∗c σ0)(t) |y′′′(t)− y′′′0 (t)| ≤ (ϕ′′′ ∗c σ0)(t),

where ∗c stands for the convolution started at c.

Our estimates are constructive and more precise then those in the known

versions of Filippov Lemma.
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1. Introduction

The theory of the existence and properties of solution sets of differential

inclusions

(1.1) Dy ∈ F (t, y),

where D is an ordinary differential operator, has been developed for many years

and most of the facts have already been discovered. This concernes mainly the

initial value problems. However, the boundary value problems still are not well

examined. Recently we observe an increase of interest in this field, especially

in the field of ordinary differential inclusions of higher order; in particular evo-

lution inclusions [25], differential inclusions of the Sturm–Liouville type [3], the

Schrödinger type [4], [5] and n-th order of the form y(n) − λy ∈ F (t, y) in [11].

In this paper the attention is focused on the fourth order differential inclu-

sions of the form

(1.2) Dy = y′′′′ − (A2 +B2)y′′ +A2B2y ∈ F (t, y)

in a separable complex Banach space (X, | · |). Here F : [0, T ]×X X is a multi-

function with the Lipschitz continuous right-hand side, i.e. there exists a positive

integrable function l( ·) , such that for every y1, y2 ∈ X the inequality

(1.3) dH(F (t, y1), F (t, y2)) ≤ l(t)|y1 − y2|

holds. Here A2 and B2 are the infinitesimal generators of two commuting co-

sine families of operators (see [30]). For (1.2) we impose the following initial

conditions (IC)

(1.4) y(a) = α, y′(a) = β, y′′(a) = γ, y′′′(a) = δ,

where a ∈ [0, T ] and α, β, γ, δ ∈ X. The operator D represents an abstract form

of complex beam differential operator D0y = y′′′′ − (a2 + b2)y′′ + a2b2y, where

a, b ∈ C. On the other hand D is a formal composition of two different elliptic

operators DAy = −y′′+A2y and DBy = −y′′+B2y, namely, D = DA ◦DB . By

L1 = L1([0, T ],X) we mean the space of Bochner integrable functions u : [0, T ]→
X with the usual norm ‖u‖1 =

∫
I
|u(t)| dt, while W s,1 = W s,1([0, T ],X), s is

a positive integer, stands for the space of u ∈ L1 such that all weak derivatives

u(i) = diu/dti, i = 1, . . . , s belong to L1. In the space AC = W 1,1 we use the

representation u(t)− u(c) =
∫ t

c
u′(s) ds for almost all t, c ∈ [0, T ].

By a solution of (1.2) with the initial conditions (1.4) we mean a function

y ∈W 4,1 satisfying (1.2) and (1.4).

Our aim is to obtain individual pointwise estimates in the Filippov type

lemma for complex beam inclusions (1.2) from the qualitative and quantitative

point of view. We apply the obtained results to the Filippov–Ważewski density
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result of the solution set of the problem (1.2) and (1.4) in the solution set of the

so-called relaxed problem

(1.5) Dy ∈ clcoF (t, y),

with (1.4), where clcoS stands for the closed convex hull of a set S. The density is

understood in terms of the uniform topology for the function y and its derivatives

y′, y′′ and y′′′. Let us also mention that analogues of the Filippov type Lemma

(see cf. [1], [2], [4], [6]–[10], [12]–[17], [20]–[22], [26]–[29], [31]) play a crucial role

in the usual proofs of relaxation (density) results ([14], [26], [23], [18]).

In the presented version of the Filippov Lemma for (1.2) with (1.4) we assume

that infinitesimal the generators A2 and B2 are linear bounded operators. This

leads to better (smaller) estimates for possible solutions and its derivatives then

those in Frankowska [14] and Papageorgiou [26]. Our estimates are expressed

in terms of ‖A‖, ‖B‖ and l. The methods used are based on the differential

equation (see [19]) Dy = f , where f ∈ L1 = L1([0, T ] ,X). We present them

in Section 2, while in Section 4 we formulate and demonstrate an analogue of

the Filippov Lemma for the IVP (1.2) with IC’s (1.4). In Section 3 we show

a lemma concerning recursive Gronwall inequalities, while in Section 5 we present

pointwise estimates in the Filippov–Ważewski Relaxation Theorem which are

based on our more precise Filippov Lemma.

Preliminaries. Let X be a separable complex Banach space with the norm

| · |. For I = [c, d] the Banach space of Lebesgue integrable functions u : I → X
with the norm ‖u‖1 =

∫
I

|u(t)|dt is denoted by L1(I,X). Let B(X) be the Banach

algebra of linear bounded operators in X with the usual norm

‖A‖ = sup{|Ax| : |x| ≤ 1}.

Consider a family {A(t) : t ∈ R} ⊂ B(X) of operators with the following pro-

perties:

1. for each x ∈ X the map t → A(t)x is strongly Lebesgue measurable on

R;

2. the map t→ ‖A(t)‖ is locally essentially bounded.

For such family by the primitive for A(t) on R we mean an operator-valued

function F (t) given by

F (t)x =

t∫
c

[A(s)x] ds.

For given u ∈ L1(I,X) by A ∗c u we denote the convolution operator

(A ∗c u)(t) =

t∫
c

A(t− s)u(s) ds.
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Observe that A ∗c u ∈ L1(I,X). Moreover, if F (t) is the primitive for A(t) then

the convolution F ∗c u ∈ AC and for almost all t ∈ I

(F ∗c u)′(t) = (A ∗c u)(t) + F (0)u(t).

In particular, if F (0) = 0 then for almost all t ∈ I

(1.6) (F ∗c u)′(t) = (A ∗c u)(t).

Recall that the set of operators {C(t) : t ∈ R} ⊂ B(X) is called the strongly

continuous cosine family if

(a) C(0) = I;

(b) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R;

(c) the map t→ C(t)x is strongly continuous for all t ∈ R and x ∈ X.

Remark 1.1. The conditions (a)–(c) are equivalent to (a′), (b), (c′), where

(a′) there is t0 in which C(t0) is invertible in B(X);

(c′) the map t→ C(t)x is strongly Lebesgue measurable.

The strongly continuous sine family {S(t) : t ∈ R} associated with a strongly

continuous cosine family {C(t) : t ∈ R} is defined by S(t)x =
∫ t

0
C(z)x dz. The

infinitesimal generator A2 : X→ X of a cosine family {C(t) : t ∈ R} is defined by

A2x = d2

dt2C(t)x
∣∣
t=0

. Our notation A2 is justified by the fact that for X, being a

Hilbert space, the positive, self-adjoint operator d2

dt2C(t)x
∣∣
t=0

possess the square

root. Observe that for any A ∈ B(X)

(1.7) CA(t) = cosh(At) = I +

∞∑
n=1

t2n

(2n)!
A2n

is the strongly continuous cosine family {CA(t) : t ∈ R}. Note, that this family

is generated by the operator A2.

Thus, if A ∈ GL(X) (i.e. has the bounded inverse), we have the representa-

tion

(1.8) SA(t) = A−1 sinh(At) =

∞∑
n=0

t2n+1

(2n+ 1)!
A2n.

More detailes on cosine and sine families of operators can be found in the paper

by Travis and Webb [30]. We restrict ourselves to bounded generators and at

the present moment we can not avoid this assumption. Similar difficulties were

met by other authors, e.g. [11].

2. Some ODE’s of higher order

2.1. An IVP of second order. Consider the differential equation

(2.1) DAy = y′′ −A2y = f,
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where A2 ∈ B(X) is the generator of a cosine family of operators {CA(t)}t∈R
given by (1.7). Let SA(t)x =

∫ t

0
CA(x) dx. By a mild solution of (2.1) on

I = [c, d ] with the initial conditions

(2.2) y(c) = α, y′(c) = β

we mean a continuous function y ∈ C [c, d] satisfying, for each t ∈ I, the relation

y(t) = CA(t− c)α+ SA(t− c)β + (SA ∗c f)(t).

Denote RAf = SA ∗c f and

(2.3) yA(t) = CA(t− c)α+ SA(t− c)β.

Observe that RAf is a solution of (2.1) with the zero initial conditions

(2.4) y(c) = 0, y′(c) = 0,

while yA(t) solves DAy = 0 with (2.2). Moreover, we have a representation of the

solution for (2.1) with IC ′s (2.2) of the form y(t) = (RAf)(t) + yA(t). In what

follows we shall assume that [a, b] ⊂ [0, T ]. Observe that for any f ∈ L1([a, b],X)

we have for all t ∈ [a, b] the inequality

(2.5) |A−1(sinh(Ax) ∗a f)(t)| ≤
(

sinh(‖A‖x)

‖A‖
∗a |f |

)
(t).

As a consequence of the estimate (2.5) one can derive that

Proposition 2.1. |RAu−RAv| ≤ R‖A‖|u− vt|.

2.2. An IVP of fourth order.

2.2.1. General case. Consider the fourth order differential equation on I

(2.6) Dy = DABy = y′′′′ − (A2 +B2)y′′ +A2B2y = f

with the initial conditions

(2.7) y(c) = α, y′(c) = β, y′′(c) = γ, y′′′(c) = δ.

We shall assume that the commutative operators A2, B2 ∈ B(X) are the gener-

ators of two cosine families of operators {CA(t) : t ∈ R} and {CB(t) : t ∈ R}
and (A2 −B2) ∈ GL(X). Our task is to find a representation of solutions of the

above problem by the use of solutions of Dy = 0 with (2.7) and Dy = f with

the initial conditions

(2.8) y(c) = 0, y′(c) = 0, y′′(c) = 0, y′′′(c) = 0.

We begin with the following observation based on Travis and Webb [30]:
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Proposition 2.2. Assume that the generators A2 and B2 are commutative

with (A2 −B2) ∈ GL(X). Let u, v ∈W 2,1 be solutions of the equations

u′′ = A2u+ f and v′′ = B2v + f ′,

respectively. Then

(a) the function y = (A2 −B2)−1(u− v) solves (2.6). Moreover,

y′ = (A2 −B2)−1(u′ − v′), y′′ = (A2 −B2)−1(A2u−B2v),

y′′′ = (A2 −B2)−1(A2u′ −B2v′), y′′′′ = (A2 −B2)−1(A2u′′ −B2v′′).

(b) If u and v satisfy the IC’s

u(c) = u′(c) = 0 and v(c) = v′(c) = 0

then

y = (A2 −B2)−1(u− v) = (A2 −B2)−1((SA − SB) ∗c f)

is a solution of Dy = f with the IVP’s (2.8). Moreover,

y′ = (A2 −B2)−1((CA − CB) ∗c f),

y′′ = (A2 −B2)−1(A2SA −B2SB) ∗c f,

y′′′ = (A2 −B2)−1(A2CA −B2CB) ∗ f,

y′′′′ = (A2 −B2)−1(A4SA −B4CB) ∗ f + f.

(c) If u and v satisfy the IC’s

u(c) = γ −B2α, u′(c) = δ −B2β

and

v(c) = γ −A2α, v′(c) = δ −A2β

then y = (A2−B2)−1(u−v) is a solution of Dy = f with the IVP’s (2.7).

Proof. (a) Observe that

y′′ = (A2 −B2)−1(u′′ − v′′) = (A2 −B2)−1(A2u−B2v) ∈W 2,1.

Hence y ∈W 4,1 and

y′′′′ = (A2 −B2)−1(A2u′′ −B2v′′) = (A2 −B2)−1(A4u−B4v) + f.

Therefore we end up with

Dy = y′′′′ − (A2 +B2)y′′ +A2B2y = f.

(b) In this case we have u = SA ∗c f and v = SB ∗c f . Take

y = (A2 −B2)−1(u− v) = (A2 −B2)−1((SA − SB) ∗c f).

Since

(A2 −B2)−1(SA − SB)(t) = S(t) =

∫ t

0

(A2 −B2)−1(CA(z)− CB(z)) dz
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is the primitive of (A2 −B2)−1(CA − CB) vanishing at 0 then by (1.6)

y′ = (A2 −B2)−1((CA − CB) ∗c f),

while

y′′ = u′′ − v′′ = (A2u−B2v) = (A2 −B2)−1(A2SA −B2SB) ∗c f.

Similarly

y′′′ = (A2 −B2)−1(A2CA −B2CB) ∗c f,

y′′′′ = (A2 −B2)−1(A4SA −B4SB) ∗c f + f.

Therefore one can again see that

y′′′′ − (A2 +B2)y′′ +A2B2y = f.

(c) According to the part (a) we need only to check that y satisfies the IC’s.

Doing that we see that

y(c) = (A2 −B2)−1(u(c)− v(c))

= (A2 −B2)−1((γ −B2α)− (γ −A2α)) = α,

y′(c) = (A2 −B2)−1(u′(c)− v′(c))

= (A2 −B2)−1((δ −B2β)− (δ −A2β)) = β,

y′′(c) = (A2 −B2)−1(A2u(c)−B2v(c))

= (A2 −B2)−1(A2(γ −B2α)−B2(γ −A2α)) = γ,

y′′′(c) = (A2 −B2)−1(A2u′(c)−B2v′(c))

= (A2 −B2)−1(A2(δ −B2β)−B2(δ −A2β)) = δ.

This completes the proof. �

Let us denote

SAB = (A2 −B2)−1(SA − SB)(2.9)

CAB = (A2 −B2)−1(CA − CB)(2.10)

and

(2.11) (RABf)(t) = (A2 −B2)−1(RAf −RBf)((t))

= (SAB ∗c f)(t) =

∫ t

c

SAB(t− z)f(z) dz.

Corollary 2.3. Observe that RABf = SAB ∗c f solves the equation Dy = f

with the IVP’s (2.8), while the equation Dy = 0 with the IVP’s (2.7) possesses
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the solution

(2.12) yAB(t) = (CAB(t− c)γ + SAB(t− c)δ

+ (C ′′AB − (A2 +B2)CAB)(t− c)α+ (S′′AB − (A2 +B2)SAB)(t− c)β).

Proof. We need to show the second part only. To see this observe that, by

Section 2.1, the equation u′′ = A2u with IVP’s

u(c) = γ −B2α, u′(c) = δ −B2β

possesses the solution

u(t) = CA(t− c)(γ −B2α) + SA(t− c)(δ −B2β).

Similarly, a solution of v′′ = A2v with conditions

v(c) = γ −A2α, v′(c) = δ −A2β

is given by

v(t) = CB(t− c)(γ −A2α) + SB(t− c)(δ −A2β).

Therefore, by Proposition 2.2 (c) we have

yAB(t) = (A2 −B2)−1(u(t)− v(t))

= (A2 −B2)−1(CA(t− c)(γ −B2α) + SA(t− c)(δ −B2β)

− CB(t− c)(γ −A2α)− SB(t− c)(δ −A2β)).

By simplifying we have

yAB(t) = (CAB(t− c)γ + SAB(t− c)δ

+ (C ′′AB − (A2 +B2)CAB)(t− c)α+ (S′′AB − (A2 +B2)SAB)(t− c)β). �

Now we have the proper tools to obtain a required representation.

Theorem 2.4. Let A,B ∈ B(X) be commutative operators with (A2−B2)−1

in B(X). Then for each f ∈ L1(I,X) the equation (2.6) with the initial conditions

(2.7) possesses the solution in the form

y = yAB +RABf,

where yAB(t) is given by (2.12) and RABf by (2.11).

Moreover,

(RABf)′ = (A2 −B2)−1((CA − CB) ∗c f) = (S′AB ∗c f),

(RABf)′′ = (A2 −B2)−1(A2SA −B2SB) ∗c f = (S′′AB ∗c f),

(RABf)′′′ = (A2 −B2)−1(A2CA −B2CB) ∗c f = (S′′′AB ∗c f).

Remark 2.5. The function SAB = (A2 −B2)−1(SA − SB) plays the role of

the Cauchy solution of Dy = 0.
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Example 2.6. Let C2
∞ be the plane C2 consisting of the vectors Y = [y1, y2]T ,

endowed with the norm |Y | = max(|y1|, |y2|). Let

J =

[
1 0

0 1

]
, A =

[
0 1

−1 0

]
and take B = 2A. Then A2 +B2 = −5J and A2B2 = 4J.

Consider the system

(2.13) DY = Y ′′′′ + 5JY ′′ + 4JY = F,

with conditions (2.8),

(2.14) Y (0) = 0, Y ′(0) = 0, Y ′′(0) = 0, Y ′′′(0) = 0,

where F ∈ L1([0, 1],C2
∞). The solution of the above problem is

Y =
1

3
((SA − S2A) ∗ F ) =

1

6
((sinh(2x)− 2 sinh(x))J ∗ F ).

Indeed, applying the Jordan form

A =

[
1 1

−i i

][
−i 0

0 i

][
1/2 i/2

1/2 −i/22

]
one can evaluate that

SA − S2A =
1

6
(sinh(2x)− 2 sinh(x))J

Hence

Y =
1

6

∫ t

0

((sinh 2x− 2 sinhx)F (t− x)) dx.

In particular for F = [18 sin t, 12]T we have the solution

Y = Y (t) = [3t cos t− sin 2t− sin t, 4 cos t− cos 2t− 3]
T
.

Example 2.7. Denote by m the Banach space consisting of the bounded

complex sequences y = {yn} = {y1, y2, . . .} endowed with the norm ‖y‖ =

sup |yn|.
Let l2 ⊂ m consists of such sequences that

∞∑
n=1
|yn|2 < ∞. l2 is a Hilbert

space endowed with the scalar product 〈y, z〉 =
∞∑

n=1
ynzn.

Let Ay = {y2,−y1, . . . , y2n,−y2n−1, . . .} : l2 → l2 and B = 2A. Then

A2 = −J , A2 +B2 = −5J , A2B2 = 4J , (A2 −B2)−1 = J/3, where Jy = y.

Consider in l2 the system

Dy = y′′′′ − (A2 +B2)y′′ +A2B2y = y′′′′ + 5y′′ + 4y =

{
24x

n

}
∈ L1([0, 1], l2)

with conditions 2.8. The solution of the above problem is

y =
1

3

(
(SA − S2A) ∗

{
24x

n

})
= 4

{
(2 sin(x)− sin(2x)) ∗ x

n

}
.
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Hence y = y(x) = {(6x+ sin 2x− 8 sinx)/n}. Indeed, we have

SA(x) = A−1 sinh(xA) = A−1
∞∑

n=0

(xA)2n+1

(2n+ 1)!
= sin(x)J,

SB(x) = S2A(x) = (2A)−1 sinh(2xA) =
1

2
sin(2x)J,

(SA − S2A)(x) =
1

6
(2 sin(x)− sin(2x))J.

2.2.2. Real case. For X = R we have a particular situation. We have a fourth

order differential equation on I

(2.15) D0y = y′′′′ − (a2 + b2)y′′ + a2b2y = f

with the initial conditions

(2.16) y(c) = α, y′(c) = β, y′′(c) = γ, y′′′(c) = δ,

where a, b, α, β, γ, δ ∈ R with a2 6= b2, a, b 6= 0. In this case the cosine family

Ca(t) = cosh(at), while Sa(t) = (sinh(at))/a. Note that the function

Sab(t) =
b sinh(at)− a sinh(bt)

ab(a2 − b2)

is the Cauchy solution of D0y = 0. Therefore the unknown function y = y(t) is

real and can be represented in the form y = yab +Rabf , where

yab(t) =
1

(a2 − b2)
((cosh(a(t− c))− cosh(b(t− c)))γ

+ (sinh(a(t− c))− sinh(b(t− c)))δ

+ (a2 cosh(b(t− c))− b2 cosh a(t− c))α

+ (a2 sinh(b(t− c))− b2 sinh a(t− c))β)

and

(Rabf)(t) = (Sab ∗c f) =

∫ t

c

b sinh(a(t− z))− a sinh(b(t− z))
ab(a2 − b2)

f(z) dz.

2.3. Estimates in norm. Now we are looking for the relations between

solutions in X and R, especially for the estimates in norm of solutions of

Dy = y′′′′ − (A2 +B2)y′′ +A2B2y = f,

Daby = y′′′′ − (a2 + b2)y′′ + a2b2y = |f |,

where a = ‖A‖ > 0, b = ‖B‖ > 0 and a 6= b. We start with the following

pointwise inequalities

‖An‖ ≤ an,, ‖ sinh(At)‖ ≤ sinh(at),

‖SA(t)‖ =

∥∥∥∥ ∞∑
n=0

A2nt2n+1

(2n+ 1)!

∥∥∥∥ ≤ ∞∑
n=0

a2nt2n+1

(2n+ 1)!
= Sa(t),
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which hold for all t ≥ 0. Moreover, for any f ∈ L1([c, d],R) we have for all

t ∈ I = [c, d] the inequality

(2.17) |(SA ∗c u)(t)| ≤ (Sa ∗c |f |)(t).

Now assume that A2 and B2 are commutative and (A2 −B2) ∈ GL(X). Let

SAB(t) =

∞∑
n=0

t2n+1

(2n+ 1)!
(A2−B2)−1(A2n−B2n) = (A2−B2)−1(SA(t)−SB(t)).

Then, for all n = 1, 2, . . ., we have

‖(A2 −B2)−1(A2n −B2n)‖ =

∥∥∥∥ n−1∑
i=0

A2iB2(n−1−i)
∥∥∥∥

≤
n−1∑
i=0

∥∥A2iB2(n−1−i)∥∥ ≤ n−1∑
i=0

a2ib2(n−1−i) =
a2n − b2n

a2 − b2
.

Hence

‖SAB(t)‖ ≤
∞∑

n=0

t2n+1

(2n+ 1)!

a2n − b2n

a2 − b2
=

(Sa − Sb)(t)

a2 − b2
= Sab(t),

‖S′AB(t)‖ =

∥∥∥∥ ∞∑
n=0

t2n

(2n)!
(A2 −B2)−1(A2n −B2n)

∥∥∥∥
≤
∞∑

n=0

t2n

(2n)!

a2n − b2n

a2 − b2
=

(Ca − Cb)(t)

a2 − b2
= S′ab(t),

‖S′′AB(t)‖ =

∥∥∥∥ ∞∑
n=0

t2n+1

(2n+ 1)!
(A2 −B2)−1(A2n+2 −B2n+2)

∥∥∥∥
≤
∞∑

n=0

t2n+1

(2n+ 1)!

a2n+2 − b2n+2

a2 − b2
=
a sinh(at)− b sinh(bt)

a2 − b2
= S′′ab(t),

‖S′′′AB(t)‖ =

∥∥∥∥ ∞∑
n=0

t2n

(2n)!
(A2 −B2)−1(A2n+2 −B2n+2)

∥∥∥∥
≤
∞∑

n=0

t2n

(2n)!

a2n+2 − b2n+2

a2 − b2
=
a2Ca(t)− b2Cb(t)

a2 − b2
= S′′′ab(t).

As a consequence of the above inequalites we have the following result:

Theorem 2.8. For each f ∈ L1([c, d,X) we have for all t ∈ [c, d] the esti-

mates

|(RABf)(t)| ≤ (Rab|f |)(t), |(RABf)′(t)| ≤ (Rab|f |)′(t),

|(RABf)′′(t)| ≤ (Rab|f |)′′(t), |(RABf)′′′(t)| ≤ (Rab|f |)′′′(t).

The proof follows from the fact that RABf = SAB ∗ f ; we leave the details

for readers.
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Remark 2.9. As a consequence of the latter estimates we get that for each

u, v ∈ L1([c, d],X) and all t ∈ [c, d]

|(RABu)(t)− (RABv)(t)| ≤ (Rab|u− v|)(t),

|(RABu)′(t)− (RABv)′(t)| ≤ (Rab|u− v|)′(t),

|(RABu)′′(t)− (RABv)′′(t)| ≤ (Rab|u− v|)′′(t),

|(RABu)′′′(t)− (RABv)′′′(t)| ≤ (Rab|u− v|)′′′(t).

3. A Gronwall type lemma

In the case X = R take p0, l ∈ L1([c, d],R+) and let ϕ : [0, d − c] → R+ be

an increasing continuous function. Consider sequences (pn)n≥0 ⊂ L1([c, d],R+)

and (εn)n≥0 ⊂ R+ satisfying for n = 0, 1, . . . the inequalities

(3.1) 0 ≤ pn+1(t) ≤ l(t)(ϕ ∗c (pn + εn))(t) = l(t)

(∫ t

c

ϕ(t− s)(pn(s) + εn) ds

)
.

Denote

(3.2) σ(t) =

∞∑
n=1

pn(t).

Then we have the following estimates:

Lemma 3.1. Assume that the sequences (pn)n≥0 ⊂ L1([c, d],R+) and (εn)n≥0
⊂ R+ satisfy, for n = 0, 1, . . ., the inequality (3.1). Then

(a) For n ≥ 0 we have

pn+1(t) ≤ l(t)
(∫ t

c

[ϕ(t− s)]n+1 [m(t)−m(s)]n

n!
p0(s) ds(3.3)

+

( n∑
i=0

εi

∫ t

c

[ϕ(t− s)]n+1−i[m(t)−m(s)]n−i

(n− i)!
ds

))
,

where m(t) =
∫ t

0
l(s) ds.

(b) Given ε ≥ 0 and let εn = ε/2n, n = 0, 1, . . . The function σ given by

(3.2) is integrable and for any t ∈ [c, d] we have

σ(t) ≤ l(t)
(∫ t

c

ϕ(t− s)K(t, s)p0(s) ds+ 2ε

∫ t

c

ϕ(t− s)K2(t, s)p0(s) ds

)
,

where K(t, s) = exp[ϕ(t− s)(m(t)−m(s))].

(c) If

ϕ(t) = Sab(t) =
b sinh(at)− a sinh(bt)

ab(a2 − b2)
, t ∈ R
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and for n ≥ 0 we have pn+1(t) = l(t)(ϕ ∗c (pn + ε/2n))(t), then

(σ ∗c ϕ)(t) ≤
∫ t

c

ϕ(t− s)(K(t, s) + 2εK2(t, s)− 1)p0(s) ds,(3.4)

(σ ∗c ϕ′)(t) ≤
∫

ctϕ′(t− s)K(t, s)p0(s) ds+ 2ε

∫ t

c

ϕ′(t− s)K2(t, s) ds.(3.5)

Moreover, ψ = σ/l is the solution of the IVP

ψ′′′′ − (a2 + b2)ψ′′ + (a2b2 − l)ψ = p0 + ε, ψ(c) = ψ′(c) = ψ′′(c) = ψ′′′(c) = 0.

Proof. (a) We apply the induction. It is obvious for n = 0, since

p1(t) ≤ l(t)
(∫ t

c

ϕ(t− s)p0(s) ds+ ε0

∫ t

c

ϕ(t− s) ds
)
.

Assume that the required inequality holds for all i ≤ n + 1. Then for n + 2

we have, by induction step, that

0 ≤ pn+2(t) ≤ l(t)
(∫ t

c

ϕ(t− z)pn+1(z) dz + εn+1

∫ t

c

ϕ(t− z) dz
)

≤ l(t)
(∫ t

c

ϕ(t− z)l(z)
∫ z

c

[ϕ(z − s)]n+1 [m(z)−m(s)]n

n!
p0(s) ds dz

+

∫ t

c

ϕ(t− z)l(z)
( n∑

i=0

εi

∫ z

c

[ϕ(z − s)]n+1−i[m(z)−m(s)]n−i

(n− i)!

)
ds dz

+ εn+1

∫ t

c

ϕ(t− z) dz
)

Applying the Fubini Theorem we get

pn+2(t) ≤ l(t)
(∫ t

c

p0(s)

∫ t

s

(ϕ(t− z)l(z)[ϕ(z − s)]n+1 [m(z)−m(s)]n

n!
dz

)
ds

+

∫ t

c

( t∫
s

( n∑
i=0

εiϕ(t− z)l(z) [ϕ(z − s)]n+1−i[m(z)−m(s)]n−i

(n− i)!

)
dz

)
ds

+ εn+1

∫ t

c

ϕ(t− s) ds
)
.

But ϕ(t) is increasing and, hence, for s ≤ z ≤ t we have

ϕ(t− z) ≤ ϕ(t− s) and ϕ(z − s) ≤ ϕ(t− s).

Moreover, d(m(z)−m(s))/dz = l(z) and thus

pn+2(t) ≤ l(t)
(∫ t

c

p0(s)[ϕ(t− s)]n+2

∫ t

s

((
[m(z)−m(s)]n+1

(n+ 1)!
)′ dz

)
ds

+

t∫
c

( n∑
i=0

εi[ϕ(t− s)]n+2−i
)(∫ t

s

(
[m(z)−m(s)]n+1−i

(n+ 1− i)!

)′
dz

)
ds
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+ εn+1

∫ t

c

ϕ(t− s) ds
)

= l(t)

(∫ t

c

p0(s)[ϕ(t− s)]n+2 [m(t)−m(s)]n+1

(n+ 1)!
ds

+

∫ t

c

( n∑
i=0

εi[ϕ(t− s)]n+2−i
)

[m(t)−m(s)]n+1−i

(n+ 1− i)!
ds

+ εn+1

∫ t

c

ϕ(t− s) ds
)

= l(t)

(∫ t

c

p0(s)[ϕ(t− s)]n+2 [m(t)−m(s)]n+1

(n+ 1)!
ds

+

∫ t

c

( n+1∑
i=0

εi[ϕ(t− s)]n+2−i
)

[m(t)−m(s)]n+1−i

(n+ 1− i)!
ds

)
,

what ends the induction step and the proof of (a).

(b) By (a) we have

σ(t) =

∞∑
n=0

pn+1(t) ≤ l(t)
( ∞∑

n=0

∫ t

c

[ϕ(t− s)]n+1 [m(t)−m(s)]n

n!
p0(s) ds

+

∞∑
n=0

( n∑
i=0

εi

∫ t

c

[ϕ(t− s)]n+1−i[m(t)−m(s)]n−i

(n− i)!
ds

))

≤ l(t)
(∫ t

c

ϕ(t− s) exp[ϕ(t− s)(m(t)−m(s))]p0(s) ds

+

∞∑
n=0

ε

2n

∫ t

c

ϕ(t− s) exp[2ϕ(t− s)(m(t)−m(s))]p0(s) ds

)

= l(t)

(∫ t

c

ϕ(t− s)K(t, s)p0(s) ds+ 2ε

∫ t

c

ϕ(t− s)K2(t, s)p0(s) ds

)
.

(c) To see the next inequalities we proceed as follows:

• for (3.4)

(σ ∗c ϕ)(t) ≤
∞∑

n=1

(
ϕ ∗c

(
pn +

ε

2n

))
(t) =

1

l(t)

∞∑
n=1

pn+1(t) =
σ(t)− p1(t)

l(t)

≤
t∫

c

ϕ(t− s)K(t, s)p0(s) ds

+ 2ε

t∫
c

ϕ(t− s)K2(t, s)p0(s) ds−
t∫

c

ϕ(t− s)(p0(s) + ε)(t)

≤
∫ t

c

ϕ(t− s)(K(t, s) + 2εK2(t, s)− 1)p0(s) ds.
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• for (3.5)

(σ ∗c ϕ′)(t) =

∞∑
n=0

t∫
c

ϕ′(t− s)pn+1(s) ds

≤
∞∑

n=0

∫ t

c

ϕ′(t− s)l(s)
∫ s

c

(ϕ(s− x))n
(m(s)−m(x))n

n!
p0(x) dx ds

+

∞∑
n=0

∫ t

c

ϕ′(t− s)l(s)
( n∑

i=0

ε

2n−i

∫ s

c

[ϕ(s−x)]n+1−i[m(s)−m(x)]n−i

(n− i)!

)
dx ds.

Now the same Fubini Theorem argument yields

(σ ∗c ϕ′)(t) ≤
∞∑

n=0

∫ t

c

(∫ t

x

ϕ′(t− s)(ϕ(s− x))n
(

(m(s)−m(x))n

n!

)′
ds

)
p0(x) dx

+

∞∑
n=0

ε

2n

t∫
c

(∫ t

x

ϕ′(t− s)
( n+1∑

i=0

[ϕ(s− x)]i
(

(2(m(s)−m(x)))i

i!

)′))
dx ds.

But for all 0 ≤ x ≤ s ≤ t ≤ T we have

ϕ(t− s) ≤ ϕ(t− x) and ϕ′(s− x) ≤ ϕ′(t− x).

Therefore

(σ ∗c ϕ′)(t) ≤
∞∑

n=0

∫ t

c

(∫ t

x

ϕ′(t− x)(ϕ(t− x))n
(

(m(s)−m(x))n

n!

)′
ds

)
p0(x) dx

+

∞∑
n=0

ε

2n

∫ t

c

(∫ t

x

ϕ′(t− x)

( n+1∑
i=0

[ϕ(t− x)]i
(

(2(m(s)−m(x)))i

i!

)′)
ds) dx

≤
∫ t

c

ϕ′(t− x) exp(ϕ(t− x)(m(t)−m(x)))p0(x) dx

+ 2ε

∫ t

c

ϕ′(t− x) exp(2ϕ(t− x)(m(t)−m(x)))dx

=

∫ t

c

ϕ′(t− x)K(t, x)p0(x) dx+ 2ε

∫ t

c

ϕ′(t− x)K2(t, x) dx

what gives (3.5). Finally, observe that

ψ(t) =
σ(t)

l(t)
=

1

l(t)

∞∑
n=0

pn+1(t) =

(
ϕ ∗c

∞∑
n=0

(
pn +

ε

2n

))
(t)

= (ϕ ∗c (σ + p0 + ε))(t) = (ϕ ∗c (lψ + p0 + ε))(t)

what means that

ψ′′′′ − (a2 + b2)ψ′′ + a2b2ψ = (lψ + p0 + ε).

In other words

ψ′′′′ − (a2 + b2)ψ′′ + (a2b2 − l)ψ = p0 + ε, �
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4. A version of Filippov lemma

Let Dy = y′′′′ − (A2 + B2)y′′ + A2B2y and consider an IVP problem in the

Banach space (X, | · |) on [c, d] ⊂ [0, T ]

Dy ∈ F (t, y),(4.1)

y(c) = α, y′(c) = β, y′′(c) = γ, y′′′(c) = δ.(4.2)

Let V = {y ∈W 4,1([c, d],X) : y(c) = y′(c) = y′′(c) = y′′′(c) = 0}.
By a solution of (4.1) with initial conditions (4.2) we mean a function y in

W = yAB + V satisfying (4.1), where yAB is given by (2.12).

We shall pose the following assumptions on F : [0, T ]×X c(X), where c(X)

stands for the family of all nonempty compact subsets of X:

Condition 4.1. For every y ∈ X the multifunction F ( · , y) is Lebesgue mea-

surable in t.

Condition 4.2. The multifunction F (t, · ) is Lipschitz continuous in y with

a positive integrable function l( · ), i.e. for every y1, y2 ∈ X the inequality

(4.3) dH(F (t, y1), F (t, y2)) ≤ l(t)|y1 − y2|

holds for almost all t ∈ [0, T ], where dH(K,L) stands for the Hausdorff distance

between sets K,L ∈ c(X).

Condition 4.3. The multivalued mapping t→ F (t, y) is integrably bounded

by an γ ∈ L1[0, T ], i.e. for each y

sup{|z| : z ∈ F (t, y)} ≤ γ(t) a.e. in [0, T ].

The main result of the paper is the following:

Theorem 4.4 (Filippov Lemma). Assume that F : [0, T ]×X c(X) satisfies

Conditions 4.1–4.3. Let y0 ∈ W be an arbitrary function with (4.2) fulfilling an

estimate

dist(Dy0(t), F (t, y0(t))) ≤ p0(t) a.e. in [c, d] ⊂ [0, T ],

where p0 ∈ L1 [0, T ]. Denote a = ‖A‖ > 0, b = ‖B‖ > 0 and assume that a 6= b.

Take

ϕ(t) = Sab(t) =
b sinh(at)− a sinh(bt)

ab(a2 − b2)
.

Then, for each ε > 0, there exists a solution y ∈W of (4.1) with (4.2) such that,

for almost every t,

|Dy(t)−Dy0(t)| ≤ σ0(t), |y(t)− y0(t)| ≤ (ϕ ∗c σ0)(t),

|y′(t)− y′0(t)| ≤ (ϕ′ ∗c σ0)(t), |y′′(t)− y′′0 (t)| ≤ (ϕ′′ ∗c σ0)(t),

|y′′′(t)− y′′′0 (t)| ≤ (ϕ′′′ ∗c σ0)(t),
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where

σ0(t) = l(t)

∫ t

c

Φ(t, s)p0(s) ds+ p0(t) + ε(l(t) + 2),

Φ(t, s) = ϕ(t− s)(exp(ϕ(t− s)(m(t)−m(s)))).

Proof. We begin with the observation that for any y ∈ W ⊂ L∞ the

multivalued mapping t → F (t, y(t)) is measurable with compact values and

integrably bounded by γ(t), i.e.

(4.4) sup{|z| : z ∈ F (t, y(t))} ≤ γ(t) a.e. in [0, T ].

Denote by

K(u) = {f ∈ L1([0, T ],X) : f(t) ∈ F (t, yAB(t) + (RABu)(t)) a.e. in [a, b]}.

Since yAB +RABu ∈ W ⊂ L∞([c, d],X) then, by (4.4), each K(u) is nonempty.

Moreover, for every u, v ∈ L1([c, d],X), any f ∈ K(u) and arbitrary δ > 0 there

is a g ∈ K(v) such that almost everywhere in [c, d]

|f(t)− g(t)| ≤ dist(f(t), F (t, yAB(t) + (RABv)(t))) + δl(t)

≤ dH(F (t, yAB(t) + (RABu)(t)), F (t, yAB(t) + (RABv)(t))) + δl(t)

≤ l(t)(|RABu−RABv|)(t) + δl(t) ≤ l(t)((Rab|u− v|)(t) + δ).

In what follows we shall adopt the Filippov technique with some necessary

changes. Fix ε > 0. Let

M = 2 max
t,s∈[c,d]

{
K2(t, s),

∫ t

c

ϕ(t− s)K2(t, s)p0(s) ds

}
and take εn = ε/(2nM). Starting with y0 = yAB +RABu0 (Dy0 = u0), we may

choose such u1 ∈ K(u0) that

|(Dy1)(t)− (Dy0)(t)| = |u0(t)− u1(t)| ≤ dist(u0(t), F (t, y0(t))) + ε0 ≤ p0(t) + ε0

almost everywhere in [c, d], where y1 = yAB +RABu1. Hence, by Theorem 2.4,

for all t ∈ [c, d] we have

|(y1 − y0)(t)| = |(RAB(u0 − u1))(t)| ≤ |(Rab|u0 − u1|)(t)|

≤ |(Rab(p0 + ε0))(t)| = (ϕ ∗c (p0 + ε0))(t).

Moreover,

|(y1 − y0)′(t)| ≤ (ϕ′ ∗c (p0 + ε0))(t),

|(y1 − y0)′′(t)| ≤ (ϕ′′ ∗c (p0 + ε0))(t),

|(y1 − y0)′′′(t)| ≤ (ϕ′′′ ∗c (p0 + ε0))(t).

The relation (4.3) yields

dist((Dy1)(t), F (t, y1(t))) ≤ l(t)((ϕ ∗c (p0 + ε0))(t)) = p1(t) a.e. in [c, d].
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We now may pick up y2 = yAB +RABu2 ∈W such that u2 = Dy2 ∈ K(u1) and

|(Dy2)(t)− (Dy1)(t)| ≤ p1(t) + ε1 a.e. in [c, d].

Observe that for all t ∈ [c, d]

|y2(t)− y1(t)| = |(RAB(u2 − u1))(t)| ≤ (ϕ ∗c (p1 + ε1))(t),

|y′2(t)− y′1(t)| ≤ (ϕ′ ∗c (p1 + ε1))(t),

|y′′2 (t)− y′′1 (t)| ≤ (ϕ′′ ∗c (p1 + ε1))(t),

|y′′′2 (t)− y′′′1 (t)| ≤ (ϕ′′′ ∗c (p1 + ε1))(t).

The latter together with (4.3) gives

dist((Dy2)(t), F (t, y2(t))) ≤ l(t)(ϕ ∗c (p1 + ε1))(t) = p2(t) a.e. in [c, d].

Continuing this procedure by induction, we obtain sequences (pn) ⊂ L1([c, d]),

(un) ⊂ L1([c, d], X) and (yn) ⊂ V with

pn+1(t) = l(t)(ϕ ∗c (pn + εn))(t),

un+1 ∈ K(un), yn = yAB +RABun,

|(Dyn+1)(t)− (Dyn)(t)| ≤ pn(t) + εn a.e. in [c, d],

|yn+1(t)− yn(t)| ≤ (ϕ ∗c (pn + εn))(t),

|y′n+1(t)− y′n(t)| ≤ (ϕ′ ∗c (pn + εn))(t),

|y′′n+1(t)− y′′n(t)| ≤ (ϕ′′ ∗c (pn + εn))(t),

|y′′′n+1(t)− y′′′n (t)| ≤ (ϕ′′′ ∗c (pn + εn))(t)

for n = 0, 1, . . . Thus

dist((Dyn+1)(t), F (t, yn+1(t))) ≤ l(t)((ϕ ∗c (pn + εn))(t)) = pn+1(t)

almost everywhere in [c, d]. Denote σ(t) =
∞∑

n=1
pn(t). By Lemma 3.1, with ε/M ,

we conclude that

σ(t) ≤ l(t)
(∫ t

c

Φ(t, s)p0(s) ds+ ε

)
,

where Φ(t, s) = ϕ(t− s)(exp(ϕ(t− s)(m(t)−m(s)))). Thus σ and σ/l are inte-

grable. Moreover, for n = 0, 1, . . . and m = 1, 2, . . . we have, almost everywhere

in [c, d],

(4.5) |Dyn+m(t)−Dyn(t)| ≤
n+m∑
i=n

(pi(t) + εi) ≤
∞∑
i=n

pi(t) +
2ε

2n

≤ σ(t) + p0(t) + 2ε ≤ l(t)
∫ t

c

Φ(t, s)p0(s) ds+ p0(t) + ε(l(t) + 2) = σ0(t).
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So, for almost all t ∈ [c, d], is

(4.6) |yn+m(t)− yn(t)| ≤
∞∑

i=n+1

(ϕ ∗c (pi + εi)) ≤ ϕ ∗c σ0.

Moreover,

(4.7)

|y′n+m(t)− y′n(t)| ≤
∞∑

i=n+1

(ϕ′ ∗c pi) ≤ ϕ′ ∗c σ0,

|y′′n+m(t)− y′′n(t)| ≤
∞∑

i=n+1

(ϕ′′ ∗c (pi + εi)) ≤ ϕ′′ ∗c σ0,

|y′′′n+m(t)− y′′′n (t)| ≤
∞∑

i=n+1

(ϕ′′′ ∗c (pi + εi)) ≤ ϕ′′′ ∗c σ0.

Therefore the sequences {un} ⊂ L1([c, d], X), {yn} = {RABun + yAB} ⊂ W ,

{y′n} = {(RABun)′+y′AB}, {y′′n} = {(RABun)′′+y′′AB} and {y′′′n } = {(RABun)′′′

+y′′′AB} are pointwise convergent and, by the Lebesgue Dominated Convergence

Theorem, they are strongly convergent. Starting with limun = u we conclude

that

lim yn = y, lim y′n = y′, lim y′′n = y′′, lim y′′′n = y′′′ and limDyn = Dy.

Since, for each n = 0, 1 . . ., (Dyn+1)(t) ∈ F (t, yn(t)) almost everywhere in [c, d]

and each F (t, · ) is Lipschitz continuous then y is a solution of (4.1) with (4.2).

We shall check that this is the required one. Indeed, taking n = 0 in (4.5), (4.6)

and passing to the limit with m→∞ we obtain, almost everywhere in [c, d],

|Dy(t)−Dy0(t)| ≤ σ0(t), |y(t)− y0(t)| ≤ (ϕ ∗c σ0)(t),

|y′(t)− y′0(t)| ≤ (ϕ′ ∗c σ0)(t), |y′′(t)− y′′0 (t)| ≤ (ϕ′′ ∗c σ0)(t),

|y′′′(t)− y′′′0 (t)| ≤ (ϕ′′′ ∗c σ0)(t).

This ends the proof. �

Example 4.5. Let F : [0, 1]× R2
∞  c(R2

∞) be given by

F (t, y) = 6
√

(y1 − sin t+ 3t cos t)2 + (y2 − 3 + 4 cos t)2

{[
3 sin t

2

]
,

[
3

2

]}
.

Since the function y →
√

(y1 − sin t+ 3t cos t)2 + (y2 − 3 + 4 cos t)2 satisfies the

Lipschitz condition with constant 1 then F (t, y) is a Lipschitz continuous map-

ping with l = l(t) = 18(1− sin t).

Consider the differential inclusion

(4.8) Dy = y′′′′ + 5y′′ + 4y ∈ F (t, y)
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with the IC’s (2.8). Observe that the function

y =

[
y1(t)

y2(t)

]
=

[
sin t− 3t cos t+ sin 2t

cos 2t− 4 cos t+ 3

]
is a particular solution of ( 4.8). Indeed, by Example 2.6, we have

Dy =

[
18 sin t

12

]
∈

{[
18 sin t

12

]
,

[
18

12

]}
= F (t, y),

since
√

(y1 − sin t+ 3t cos t)2 + (y2 − 3 + 4 cos t)2 = 1.

Let y0(t) = 0 = [0, 0]
T

. Then

d(D0, F (t, 0)) = 18 sin t
√

(− sin t+ 3t cos t)2 + (−3 + 4 cos t)2 ≤ 24 sin t = p0(t).

In this case we have

a = ‖A‖ = 1, b = ‖B‖ = 2,

ϕ(t) =
1

6
(sinh(2t)− 2 sinh t), m(t) = 18(t+ cos t− 1)

and

σ0(t) = 24 sin t+ ε(20− 18 sin t)

+ 3(1− sin t)

t∫
0

[(sinh(2(t− s))− 2 sinh(t− s))× (8 sin s− sin 2s)

× exp(54(sinh(2(t− s))− 2 sinh(t− s))(t− s+ cos t− cos s))] ds.

Checking that the solution

y =

[
sin t− 3t cos t+ sin 2t

cos 2t− 4 cos t+ 3

]
fulfills all statements of our version of the Filippov Lemma is quite labourious.

Example 4.6. Let F : [0, 1]× l2  c(l2) be given by

F (t, y) =
4
√

6

π

√√√√ ∞∑
n=1

(
yn −

8 sin t− sin 2t

n

)2

·
({

1

2n

}
,

{
1

n

})
.

Since the function

y = {yn} →

√√√√ ∞∑
n=1

(
yn −

8 sin t− sin 2t

n

)2

satisfies the Lipschitz condition with constant 1 and

diam

({
1

2n

}
,

{
1

n

})
=

π

2
√

6
,

then F (t, y) is a Lipschitz continuous mapping with the constant l = 2.
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Consider the differential inclusion

(4.9) Dy = y′′′′ + 5y′′ + 4y ∈ F (t, y)

with the IC’s (2.8). Observe that the function

y(t) =

{
8 sin t− 6t− sin 2t

n

}
is a particular solution of 4.9. Indeed, by Example 2.7, we have

Dy =

{
24t

n

}
∈
({

12t

n

}
,

{
24t

n

})
= F (t, y).

Let y0(t) = {0}. Then

F (t, {0}) = 4(8 sin t− sin 2t) ·
({

1

2n

}
,

{
1

n

})
and therefore

d(D0, F (t, 0)) =
π(8 sin t− sin 2t)√

6
= p0(t).

In this case we have

a = ‖A‖ = 1, b = ‖B‖ = 2, ϕ(t) =
1

6
(sinh(2t)− 2 sinh t)

and

σ0(t) =
π√
6

(8 sin t− sin 2t) + 4ε

+
2π

6
√

6

t∫
0

[
(sinh(2(t− s))− 2 sinh(t− s))(8 sin s− sin 2s)

× exp

(
(sinh(2(t− s))− 2 sinh(t− s))(t− s)

3

)]
ds.

One can check, after long calculation, that the solution

y(t) =

{
8 sin t− 6t− sin 2t

n

}
fulfills the statements of our version of the Filippov Lemma.

5. Filippov–Ważewski Theorem on [0, T ]

The celebrated Filippov–Ważewski result states that the solution set of dif-

ferential inclusion

y′ ∈ G(t, y), y(0) = α,

where G is Lipschitz continuous multifunction satisfying Conditions 4.1–4.3, is

dense in the solution set of

(5.1) y′ ∈ clcoG(t, y), y(0) = α.
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As a conclusion we can deduce that the similar result holds for higher order

differential inclusions

Dy ∈ F (t, y),(5.2)

Dy ∈ clcoF (t, y),(5.3)

with the same IC

(5.4) y(0) = α, y′(0) = β, y′′(0) = γ, y′′′(0) = δ,

where Dy = y′′′′ − (A2 + B2)y′′ + A2B2y and F : [0, T ] × X  c(X) satisfies

Conditions 4.1–4.3. Namely, the inclusion (5.2) can be transformed to (5.1) by

introducing new unknown Y = [y1, y2, y3, y4]T and taking

G(t, Y ) =
{

[y2, y3, y4, w]T : w ∈ (A2 +B2)y3 −A2B2y1 + F (t, y1)
}
.

This transformation preserves Conditions 4.1–4.3 but with larger parameters

and therefore leads to less precise estimates. In this section we propose ”an

alternative proof” based on our version of the Filippov Lemma. Namely, we

have the following:

Theorem 5.1. Let r be a solution of (5.3) with (5.4). Then, for each ε > 0,

there exists a solution y of (5.2) with (5.4) such that

|y(t)− r(t)| ≤ 2ε(ϕ ∗c (l + 1))(t) + ε,

|y′(t)− r′(t)| ≤ 2ε(ϕ′ ∗c (l + 1))(t) + ε,

|y′′(t)− r′′(t)| ≤ 2ε(ϕ′′ ∗c (l + 1))(t) + ε,

|y′′′(t)− r′′′(t)| ≤ 2ε(ϕ′′′ ∗c (l + 1))(t) + ε,

where

ϕ(t) =
‖A‖ sinh(‖B‖ t)− ‖B‖ sinh(‖A‖ t)

‖A‖ ‖B‖ (‖A‖2 − ‖B‖2)
.

Proof. Fix ε > 0 and denote

M = 1 + sup
t∈[0,T ]

(∫ t

0

Φ(t, z)l(z) dz

)
,

where Φ(t, s) = ϕ(t− s)(exp(ϕ(t− s)(m(t)−m(s)))).

Take a partition 0 = t0 < t1 < . . . < tN+1 = T such that for each k =

0, . . . , N is ∫
[tk,tk+1]

γ(t) dt <
ε

2M
,

∥∥∥∥ ∫
[tk,tk+1]

[ϕ(tk+1 − x), ϕ′(tk+1 − x), ϕ′′(tk+1 − x), ϕ′′(tk+1 − x)]T γ(x) dx

∥∥∥∥
<

ε

2M
.
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Let Dr = v, where v(t) ∈ clcoF (t, r(t)). Observe that, by (2.12), the function

zk = zk(t) = (A2 −B2)−1((CA(t− tk)− CB(t− tk))r′′(tk)

+ (SA(t− tk)− SB(t− tk))r′′′(tk)

+ (CB(t− tk)A2 − CA(t− tk)B2)r(tk)

+ (SB(t− tk)A2 − SA(t− tk)B2)r′(tk))

is for t ∈ [tk, tk+1] the unique solution of Dz = 0 with the IC’s

z(tk) = r(tk), z′(tk) = r′(tk), z′′(tk) = r′′(tk) and z′′′(tk) = r′′′(tk).

Hence, by Theorem 2.4, for all t ∈ [tk, tk+1] we have
r(t)− zk(t)

r′(t)− z′k(t)

r′′(t)− z′′k (t)

r′′′(t)− z′′′k (t)

 =


(RABv)(t)

(RABv)′(t)

(RABv)′′(t)

(RABv)′′′(t)

 =

∫ t

tk


SAB(t− x)

S′AB(t− x)

S′′AB(t− x)

S′′′AB(t− x)

 v(x) dx.

Therefore∥∥∥∥∥∥∥∥∥


r(t)− r(tk)

r′(t)− r′(tk)

r′′(t)− r′′(tk)

r′′′(t)− r′′(tk)


∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


r(t)− zk(t)

r′(t)− z′k(t)

r′′(t)− z′′k (t)

r′′′(t)− z′′′k (t)


∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


(RABv)(t)

(RABv)′(t)

(RABv)′′(t)

(RABv)′′′(t)


∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥


(Rab |v|)(t)
(Rab |v|)′(t)
(Rab |v|)′′(t)
(Rab |v|)′′′(t)


∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥∥
t∫

tk


ϕ(t− x)

ϕ′(t− x)

ϕ′′(t− x)

ϕ′′′(t− x)

 γ(x)dx

∥∥∥∥∥∥∥∥∥ ≤
ε

2M
.

Now observe that, for t = tk+1, we have
r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

r′′(tk+1)− z′′k (tk+1)

r′′′(tk+1)− z′′′k (tk+1)

 ∈
∫ tk+1

tk


SAB(tk+1 − x)

S′AB(tk+1 − x)

S′′AB(tk+1 − x)

S′′′AB(tk+1 − x)

 clcoF (x, r(x)).

But, by the properties of the Aumann integral (see [16]), we have

cl

∫
[tk,tk+1]

Ψ(x)clcoF (x, r(x)) = cl

∫
[tk,tk+1]

Ψ(x)F (x, r(x)),

where Ψ(x) ∈ L∞([0, T ] ,Xn). Thus
r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

r′′(tk+1)− z′′k (tk+1)

r′′′(tk+1)− z′′′k (tk+1)

 ∈ cl

∫ tk+1

tk


SAB(tk+1 − x)

SAB(tk+1 − x)

SAB(tk+1 − x)

SAB(tk+1 − x)

F (x, r(x)),
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and therefore, for each k = 0, . . . , N , there exists an integrable selection uk(t) ∈
F (t, r(t))almost everywhere in [tk, tk+1] such that∥∥∥∥∥∥∥∥∥


r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

r′′(tk+1)− z′′k (tk+1)

r′′′(tk+1)− z′′′k (tk+1)

−
∫
[tk,tk+1]


SAB(tk+1 − x)

SAB(tk+1 − x)

SAB(tk+1 − x)

SAB(tk+1 − x)

uk(x) dx

∥∥∥∥∥∥∥∥∥ <
ε

2MN
.

Take

u =

N∑
k=0

uk · χ[tk,tk+1]

and let y0 be a solution of Dy = u with (5.4). Then, for k = 0, . . . , N − 1, we

have ∥∥∥∥∥∥∥∥∥


r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

r′′(tk+1)− z′′k (tk+1)

r′′′(tk+1)− z′′′k (tk+1)

−


y0(tk+1)− zk(tk+1)

y′0(tk+1)− z′k(tk+1)

y′′0 (tk+1)− z′′k (tk+1)

y′′′0 (tk+1)− z′′′k (tk+1)


∥∥∥∥∥∥∥∥∥ <

ε

2MN
.

Equivalently, for k = 1, . . . , N ,∥∥[r(tk)− y0(tk), r′(tk)− y′0(tk), r′′(tk)− y′′0 (tk), r′′′(tk)− y′′′0 (tk)
]T∥∥ < ε

2MN
.

Therefore, for all t ∈ [tk, tk+1] is

(5.5) y(a) = α, y′(a) = β, y′′(a) = γ, y′′′(a) = δ,

∥∥[r(t)− y0(t), r′(t)− y′0(t), r′′(t)− y′′0 (t), r′′′(t)− y′′′0 (t)
]T∥∥

≤

∥∥∥∥∥∥∥∥∥


r(t)− r(tk)

r′(t)− r′(tk)

r′′(t)− r′′(tk)

r′′′(t)− r′′(tk)


∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥


r(tk)− y0(tk)

r′(tk)− y′0(tk)

r′′(tk)− y′′0 (tk)

r′′′(tk)− y′′′0 (tk)


∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥


y0(tk)− y0(t)

y′0(tk)− y′0(t)

y′′0 (tk)− y′′0 (t)

y′′′0 (tk)− y′′′0 (t)


∥∥∥∥∥∥∥∥∥<

ε

M
.

Hence

dist((Dy0)(t), F (t, y0(t))) = dist(u(t), F (t, y0(t))) ≤ l(t) |r(t)− y0(t)| ≤ εl(t)

M
.

By the Filippov Lemma there exists a solution y ∈ W of (5.2) with (5.4) such

that almost everywhere in t,

|Dy(t)−Dy0(t)| ≤ εl(t)
((∫ t

c

Φ(t, s)
l(s)

M
ds+

1

M
+ 1

)
+ 2

)
≤ 2ε(l(t) + 1),

|y(t)− y0(t)| ≤ 2ε(ϕ ∗c (l + 1))(t), |y′(t)− y′0(t)| ≤ 2ε(ϕ′ ∗c (l + 1))(t),

|y′′(t)− y′′0 (t)| ≤ 2ε(ϕ′′ ∗c (l + 1))(t), |y′′′(t)− y′′′0 (t)| ≤ 2ε(ϕ′′′ ∗c (l + 1))(t),

where

Φ(t, s) = ϕ(t− s)(exp(ϕ(t− s)(m(t)−m(s)))).
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Thus

|y(t)− r(t)| ≤ 2ε(ϕ ∗c (l + 1))(t) + ε,

|y′(t)− r′(t)| ≤ 2ε(ϕ′ ∗c (l + 1))(t) + ε,

|y′′(t)− r′′(t)| ≤ 2ε(ϕ′′ ∗c (l + 1))(t) + ε,

|y′′′(t)− r′′′(t)| ≤ 2ε(ϕ′′′ ∗c (l + 1))(t) + ε.

This ends the proof. �

References

[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, Berlin, 1984.

[2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhaüser, Boston, Basel, Berlin,
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