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EXISTENCE AND UNIQUENES RESULTS

FOR SYSTEMS OF IMPULSIVE FUNCTIONAL

STOCHASTIC DIFFERENTIAL EQUATIONS

DRIVEN BY FRACTIONAL BROWNIAN MOTION

WITH MULTIPLE DELAY

Mohamed Ferhat — Tayeb Blouhi

Abstract. We present some existence and uniqueness results on impulsive

functional differential equations with multiple delay with fractional Brown-
ian motion. Our approach is based on the Perov fixed point theorem and

a new version of Schaefer’s fixed point in generalized metric and Banach

spaces.

1. Introduction

Stochastic partial functional differential equations with finite delays driven

by fractional Brownian motion (SDEs) are very important as stochastic models

of biological, chemical, physical, and economical systems.

The study of impulsive stochastic functional differential equations is a new

research area. There are few publications in this theory. The existence of solu-

tions of impulsive differential equations was investigated, for example in [7], [9],

[17], [21], [23]–[25], [32], [38], [42], [46] the authors investigated the existence of

solutions of nonlinear stochastic differential equations by means of the Banach

fixed point theorem. Ouahab [30] obtained existence of solutions of functional
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differential equations by Kakutani’s fixed point theorem. It is also worth empha-

sizing that impulsive differential systems and evolution differential systems are

used to describe numerous models of real processes and phenomena appearing

in the applied sciences, for instance, in physics, related to chemical technology,

population dynamics, biotechnology and economics. Differential equations with

impulses were considered for the first time by Milman and Myshkis [27], with

impulsive effects and multiple delay, and are of active research which culminated

with the monograph by Halanay and Wexler [19]. Many phenomena and evolu-

tion processes in physics, chemical technology, population dynamics, and natural

sciences may change state abruptly or be subject to short-term perturbations.

These perturbations may be seen as impulses. Impulsive problems arise also

in various applications in communications, mechanics (jump discontinuities in

velocity), electrical engineering, medicine and biology. A comprehensive intro-

duction to the basic theory is well developed in the monographs by Benchohra

et al. [2], Graef et al. [17], Laskshmikantham et al. [20], Samoilenko and Peres-

tyuk [39].

Random differential and integral equations play an important role in char-

acterizing many social, physical, biological and engineering problems; see for

instance the monograph by Da Prato and Zabczyk [12], Gard [15], Gikhman and

Skorokhod [16], Sobczyk [40], Tsokos and Padgett [41], and references therein.

Recently, stability of stochastic differential equations with Markovian switch-

ing has received a lot of attention [22], [33], [45]. For example, a stochastic

model for drug distribution in a biological system was described by Tsokos and

Padgett [41] to a closed system with a simplified heat, one organ or capillary

bed, and re-circulation of a blood with a constant rate of flow, where the heart

is considered as a mixing chamber of constant volume. For the basic theory

concerning stochastic differential equations see the monographs by Bharucha–

Reid [3], Mao [25], Øksendal [31].

In this article, our main objective is to establish sufficient conditions for the

existence of solutions of the following first order stochastic impulsive functional

equation with multiple delay:

(1.1)



dx(t) =

( n∗∑
i=1

x(t− Ti) + g1(t, xt, yt)

)
dt+ f1(t)d◦BH1(t),

t ∈ J, t 6= tk,

dy(t) =

( n∗∑
i=1

y(t− Ti) + g2(t, xt, yt)

)
dt+ f2(t) d◦BH1(t),

t ∈ J, t 6= tk,

∆x(t) = Ik(x(tk)), t = tk, k = 1, 2, . . . ,m,

∆y(t) = Ik(y(tk)), t = tk, k = 1, 2, . . . ,m,

x(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],

y(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],
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where n∗ ∈ {1, 2, . . .}, r = max
1≤i≤n∗

Ti, considered with respect to a complete

probability space (Ω,F ,Ft, P ) furnished with a family of right continuous and

increasing σ-algebras {Ft : t ∈ J} satisfying Ft ⊂ F . The impulse times tk
satisfy 0 = t0 < t1 < . . . < tm < T . As for yt we mean the segment solution

which is defined in the usual way, that is, if y( · , · ) : [−r, b]×Ω→ Rn, then, for

any t ≥ 0, yt( · , · ) : [−r, 0]× Ω→ Rn is given by

yt(θ, ω) = y(t+ θ, ω), for θ ∈ [−r, 0], ω ∈ Ω.

Here yt( · ) represents the history of the state from time t− r, up to the present

time t. Before describing the properties fulfilled by the operators f i, gi and

Ik, Ik, we need to introduce some notation and describe some spaces. Let DF0

be the space defined by

DF0
=
{
φ : [−r, 0]× Ω→ Rn is continuous everywhere except for a finite

number of points φ(t−k ) and φ(t+k ) with φ(tk) = φ(t−k )
}

endowed with the norm

‖φ(t)‖DF0
=

(∫ 0

−r
|φ(t)|2 dt

)1/2
.

Now, for a given b > 0, we define

DF0
=

{
y : [−r, b]× Ω→ Rn, yk ∈ C(Jk,Rn) for k = 1, . . .m, y0 ∈ DF0

,

and there exist y(t−k ) and y(t+k ) with y(tk) = y(t−k ), k = 1, . . . ,m,

and sup
t∈[0,b]

E(|y(t)|2) <∞,
∫ 0

−r
|φ(t)|2dt <∞

}
,

endowed with the norm

‖y‖DFb
= ‖φ‖DF0

+ sup
0≤s≤b

(E ‖y(s)‖2)1/2,

where yk denotes the restriction of y to Jk = (tk−1, tk], k = 1, . . . ,m, and

J0 = [−r, 0].

We will consider an initial data φ ∈ DF0
where J := [0, b]. Let f1, f2 : J →

Rn be Carathéodory functions, g1, g2 : J ×DF0
×DF0

→ Rn, and BH = (BH,j :

j = 1, . . . , d) be a cylindrical fractional Brownian motion with Hurst parameter

H1, H2 ∈ (1/2, 1) defined in a complete probability space (Ω,F ,P), l = 1, 2,

Ik, Ik ∈ C(Rn,Rn), k = 1, . . . ,m, and ∆x|t=tk = x(t+k ) − x(t−k ), ∆y|t=tk =

y(t+k )− y(t−k ). The notations

y(t+k ) = lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0+

y(tk − h)

stand for the right and the left hand limits of the function y at t = tk, respectively.
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It is obvious that the system (1.1) can be seen as a fixed point problem:

(1.2)


dz(t) =

( n∗∑
i=1

z(t− Ti) + g(t, zt)

)
dt+ f(t) d◦BH(s),

t ∈ [0, b], t 6= tk,

∆z(t) = I∗k(z(tk)), t = tk, k = 1, 2, . . . ,m,

z(t) = φ̃(t) ∈ DF0
×DF0

, t ∈ [−r, 0],

where

z(t) =

[
x(t)

y(t)

]
, f(t) =

[
f1(t)

f2(t)

]
,

g(t, zt) =

[
g1(t, xt, yt)

g2(t, xt, yt)

]
, φ̃(t) =

[
φ(t)

φ(t)

]
.

This paper is motivated by [18], [42] and we generalize the existence and

uniqueness of solution results to impulsive stochastic differential equations under

non-Lipschitz condition and Lipschitz condition. In Section 2, we introduce all

the background material used in this paper such as stochastic calculus and some

properties of generalized Banach spaces. In Section 3 we establish a version

of Perov’s fixed point theorem and prove another result on the existence of

solutions to problem (1.1). In Section 4 we prove some existence results based

on a nonlinear alternative of Leray–Schauder type theorem in generalized Banach

spaces. An example is provided in the last section to illustrate the theory.

2. Preliminaries

In this section, we introduce some notations, and recall some definitions,

and preliminary facts which are used throughout this paper. Actually we will

borrow them from [6]. Although we could simply refer to this paper whenever

we need it, we prefer to include this summary in order to make our paper as

much self-contained as possible.

2.1. Some results on stochastic integrals. Let (Ω,F ,P) be a complete

probability space with a filtration (F = Ft)t≥0 satisfying the usual conditions

(i.e., right continuity and F0 containing all P-null sets). For a stochastic process

x( · , · ) : [0, T ] × Ω → Rn we will write x(t) (or simply x when no confusion is

possible) instead of x(t, w). SDEs with respect to fBm have been interpreted via

various stochastic integrals, such as the Wick integral, the Wiener integral, the

Skorohod integral, and path-wise integrals [10], [16], [28], [37].

Definition 2.1. The fractional Brownian motion (BH(t)) with Hurst index

H is a centered self-similar Gaussian process BH = BH(t), t ∈ R+, on (Ω,F ,P)

with the following properties:
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(a) BH(0) = 0;

(b) E(BH(t)) = 0, t ∈ R+;

(c) E(BH(t)BH(s)) = (|t|2H + |s|2H + |t− s|2H)/2, t, s ∈ R+.

For H = 1/2, this is the usual Brownian motion.

We recall some stochastic integration with respect to the fractional Brownian

motion [14], [37]. Let f : R+ → R+ be Borel measurable and 1/2 ≤ H < 1. Let

φ : R+ × R+ → R+ be given by

φ(t, s) = H(2H − 1)|t− s|2H−2, t, s ∈ R+.

Then we define

L2
φ =

{
f : |f |2φ =

∫
R+

∫
R+

f(t)f(s)φ(t, s) ds dt <∞
}
.

If we equip L2
φ with the inner product

〈f1, f2〉φ =

∫
R+

∫
R+

f1(t)f2(s)φ(t, s) ds dt,

then L2
φ(R+) becomes a separable Hilbert space. Let S be the set of smooth and

cylindrical random variables of the form

F = f(BH(ψ1), . . . , BH(ψn)),

where n ≥ 1, f ∈ C∞b (Rn) (i.e., all partial derivatives of f are bounded), ψi ∈ H,

H is a Hilbert space [1]. The derivative operator DH
t of a smooth and cylindrical

random variable F is defined as the H-valued random variable:

DH
t F =

n∑
i=1

∂f

∂xi

(
BH(ψ1), . . . , BH(ψn)

)
ψi.

Introduce the Malliavin φ-derivative of F :

Dφ
t F =

∫
R+

φ(t, v)DH
v F dv.

We refer to [4] for more details.

Definition 2.2. Let u(t) be a stochastic process with integrable trajectories.

(a) The symmetric integral of u(t) with respect to BH(t) is defined as the

limit in probability, as ε tends to zero, of

1

2ε

∫ T

0

u(s)
(
BH(s+ ε)−BH(s− ε)

)
ds,

provided it exists; we denote it by
∫ T
0
u(s) d◦BH(s).

(b) The forward integral of x(t) with respect to BH is defined as the limit in

probability, as ε tends to zero, of

1

ε

∫ T

0

u(s)
BH(s+ ε)−BH(s)

ε
ds,
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provided it limit exists; we denote it by
∫ T
0
u(s) d−BH(s).

(c) The backward integral of u(t) with respect to BH is defined as the limit

in probability, as ε tends to zero, of

1

ε

∫ T

0

u(s)
BH(s− ε)−BH(s)

ε
ds,

provided it exists; we denote it by
∫ T
0
u(s) d+BH(s).

Remark 2.3 ([4]). Let Lφ(0, T ) be the family of stochastic processes u(t) on

[0, T ] such that u(t) ∈ Lφ(0, T ) if E |u(t)|2φ <∞. Assume that u(t) is a stochastic

process in L(0, T ) that satisfies∫
[0,T ]

∫
[0,T ]

|DH
s u(t)||t− s|2H−2 ds dt <∞.

Then the symmetric integral exists and the following relation holds:

(2.1)

∫ T

0

u(s) d◦BH(s) =

∫ T

0

u(s) � dBH(s) +

∫ T

0

(Dφ
s u(t)) ds,

where � denotes the Wick product, 1/2 < H < 1.

Remark 2.4 ([4]). If u(t) ∈ Lφ(0, T ), the definition of the forward and

backward integrals with respect to fBm is as follows:∫ T

0

u(s) d−BH(s) =

∫ T

0

u(s) � dBH(s) +

∫ T

0

(Dφ
s u(t)) ds,(2.2) ∫ T

0

u(s) d+BH(s) =

∫ T

0

u(s) � dBH(s) +

∫ T

0

(Dφ
s u(t)) ds.(2.3)

A detailed proof of Lemma 2.5 can be found in the authors’ previous work [43].

Lemma 2.5. Suppose that Z(s) is a stochastic process in Lφ(0, T ), and BH(t),

H > 1/2, is a fractional Brownian motion. For any 0 < T < ∞, there exists

a constant C(H,T ) such that the following inequality holds:

(2.4) E
(∫ T

0

Z(s) d◦BH(s)

)2

≤ 2C(H,T )

(∫ T

0

E |Z(s)|2 ds
)

+ 4CT 2,

where C(H,T ) = HT 2H−1.

2.2. Some results on fixed point theorems. In this section we define

vector metric spaces and generalized Banach spaces and prove some proper-

ties of them. If x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we

mean xi ≤ yi for all i = 1, . . . , n. Also |x| = (|x1|, . . . , |xn|) and max (x, y) =

max (max (x1, y1), . . . ,max (xn, yn)). If c ∈ R, then x ≤ c means xi ≤ c for each

i = 1, . . . , n. For x ∈ Rn, (x)i = xi, i = 1, . . . , n.

Definition 2.6. Let E be a vector space on K = R or C. By a vector-valued

norm on E we mean a map ‖ · ‖ : E → Rn+ with the following properties:
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(a) ‖x‖ ≥ 0 for all x ∈ E; if ‖x‖ = 0 then x = 0;

(b) ‖λx‖ = |λ|‖x‖ for all x ∈ E and λ ∈ K;

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E.

The pair (E, ‖ · ‖) is called a generalized normed space. If the generalized

metric generated by ‖ · ‖ (i.e., d(x, y) = ‖x − y‖) is complete then the space

(E, ‖ · ‖) is called a generalized Banach space, where

‖x− y‖ =


‖x− y‖1

...

‖x− y‖n

 .

Notice that ‖ · ‖ is a generalized Banach space on E if and only if ‖ · ‖i,
i = 1, . . . , n, are norms on E.

Remark 2.7. In generalized metric spaces in the sense of Perov, the nota-

tions of convergence sequence, Cauchy sequence, completeness, open subset and

closed subset are similar to those for usual metric spaces.

Definition 2.8. A square matrix M of real numbers is said to be convergent

to zero if and only if its spectral radius ρ(M) is strictly less than 1. In other

words, this means that all the eigenvalues of M are in the open unit disc.

Lemma 2.9 ([36]). Let M be a square matrix of nonnegative numbers. The

following assertions are equivalent:

(a) M is convergent to zero,

(b) the matrix I −M is non-singular and

(I −M)−1 = I +M +M2 + . . .+Mk + . . . ,

(c) ‖λ‖ < 1 for every λ ∈ C with det(M − λI) = 0,

(d) I −M is non-singular and (I −M)−1 has nonnegative elements.

Definition 2.10. We say that a non-singular matrix A = (aij)1≤i,j≤n ∈
Mn×n(R) has the absolute value property if

A−1|A| ≤ I, where |A| = (|aij |)1≤i,j≤n ∈Mn×n(R+).

The classical Banach contraction principle was extended for contractive maps

on spaces endowed with vector-valued metric by Perov in 1964 [34], Perov and

Precup [35]. For a version of Schauder fixed point, see Cristescu [11]. The

purpose of this section is to present a version of Schaefer’s fixed point theorem

and nonlinear alternative of Leary–Schauder type in generalized Banach spaces.

Theorem 2.11 ([34]). Let (X, d) be a complete generalized metric space with

d : X ×X → Rn and let N : X → X be such that d(N(x), N(y)) ≤Md(x, y), for

all x, y ∈ X and some square matrix M of nonnegative numbers. If the matrix
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M is convergent to zero, that is Mk → 0 as k →∞, then N has a unique fixed

point x∗ ∈ X

d(Nk(x0), x∗) ≤Mk(I −M)−1d(N(x0), x0), for every x0 ∈ X and k ≥ 1.

Theorem 2.12 ([11]). Let E be a generalized Banach space, C ⊂ E be

a nonempty closed convex subset of E and N : C → C be a continuous oper-

ator with relatively compact range. Then N has a fixed point in C.

As a consequence of the Schauder fixed point theorem we present a version of

Schaefer’s fixed point theorem and a nonlinear alternative Leary–Schauder type

theorem in generalized Banach space [6].

Theorem 2.13. Let (E, ‖ · ‖) be a generalized Banach space and N : E → E

be a continuous compact mapping. Moreover, assume that the set

A = {x ∈ E : x = λN(x) for some λ ∈ (0, 1)},

is bounded. Then N has a fixed point.

Definition 2.14. The map f : J×DF0 → Rn is said to be L2-Carathéodory if

(a) t 7→ f(t, v) is measurable for each v ∈ DF0
;

(b) v 7→ f(t, v) is continuous for almost all t ∈ J ;

(c) for each q > 0, there exists αq ∈ L1(J,R+) such that

E |f(t, v)|2 ≤ αq(t), for all ‖v‖2DF0
≤ q and for a.e. t ∈ J.

The following result is known as the Grönwall–Bihari Theorem.

Lemma 2.15 ([5]). Let u, g : J → R be positive real continuous functions.

Assume there exist c > 0 and a continuous nondecreasing function h : R →
(0,+∞) such that

u(t) ≤ c+

∫ t

a

g(s)h(u(s)) ds, for all t ∈ J.

Then

u(t) ≤ H−1
(∫ t

a

g(s) ds

)
, for all t ∈ J,

provided ∫ +∞

c

dy

h(y)
>

∫ b

a

g(s) ds.

Here H−1 refers to the inverse of the function

H(u) =

∫ u

c

dy

h(y)
for u ≥ c.
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3. Existence result

Let us start by defining what we mean by a solution of problem (1.1).

ACi(J,Rn) is the space of functions y : J → Rn, i times differentiable, whose

i-th derivative, y(i), is absolutely continuous.

Lemma 3.1. Let gi : DF0
× DF0

→ Rn and f i : J → Rn, i = 1, 2, be

a continuous function. Let Ik, Ik ∈ C(Rn,Rn) for each k = 1, . . . ,m and let

x, y ∈ DFb
∩AC1 be a classical solution of the problem

(3.1)



dx(t) =

( n∗∑
i=1

x(t− Ti) + g1(xt, yt)

)
dt+ f1(t) d◦BH1(t),

t ∈ J, t 6= tk,

dy(t) =

( n∗∑
i=1

y(t− Ti) + g2(xt, yt)

)
dt+ f2(t) d◦BH2(t),

t ∈ J, t 6= tk,

∆x(t) = Ik(x(tk)), t = tk, k = 1, 2, . . . ,m,

∆y(t) = Ik(y(tk)),

x(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],

y(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],

where r = max
1≤i≤n∗

Ti if and only if z is a solution of the impulsive integral func-

tional differential equation

(3.2)



x(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],

x(t) = φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds+

n∗∑
i=1

∫ t−Ti

0

x(s) ds

+

∫ t

0

f1(s) d◦BH1(s) +

∫ t

0

g1(xs, ys) ds+
∑

0≤tk≤t

Ik(x(tk)),

for t ∈ J and a.e. w ∈ Ω,

and

(3.3)



y(t) = φ(t) ∈ DF0
, t ∈ [−r, 0],

y(t) = φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds+

n∗∑
i=1

∫ t−Ti

0

y(s) ds

+

∫ t

0

f2(s) d◦BH2(s) +

∫ t

0

g2(xs, ys) ds+
∑

0≤tk≤t

Ik(y(tk)),

for t ∈ J and a.e. w ∈ Ω.
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Proof. Let (x, y) be a possible solution of the problem (3.1). Then z|[−r,t1] =

(x|[−r,t1], y|[−r,t1]) is a solution to

dx(t) =

( n∗∑
i=1

x(t− Ti) + g1(xt, yt)

)
dt+ f1(t) d◦BH1(t), t ∈ J := [0, b].

Assume that tk < t ≤ tk+1, k = 1, . . . ,m. Integration of the above inequality

yields

x(t−1 )− x(0) =

n∗∑
i=1

∫ t1

0

x(s− Ti) ds+

∫ t1

0

f1(s) d◦BH1(s) +

∫ t1

0

g1(xs, ys) ds,

x(t−1 )− x(0) =

n∗∑
i=1

∫ t1−Ti

−Ti

x(s) ds+

∫ t1

0

f1(s) d◦BH1(s) +

∫ t1

0

g1(xs, ys) ds,

x(t−2 )− x(t+1 ) =

n∗∑
i=1

∫ t2

t1

x(s− Ti) ds+

∫ t2

t1

f1(s) d◦BH1(s) +

∫ t2

t1

g1(xs, ys) ds,

x(t−2 )− x(t−1 ) = I1(x(t1)) +

n∗∑
i=1

∫ t2

t1−Ti

x(s) ds

+

∫ t2

t1

f1(s) d◦BH1(s) +

∫ t2

t1

g1(xs, ys) ds.

By recurrence,

x(t−k )− x(t+k−1) =

n∗∑
i=1

∫ tk

tk−1

x(s− Ti) ds

+

∫ tk

tk−1

f1(s) d◦BH1(s) +

∫ tk

tk−1

g1(xs, ys) ds,

x(t−k )− x(t−k−1) = Ik(x(tk)) +

n∗∑
i=1

∫ tk−Ti

tk−1−Ti

x(s) ds

+

∞∑
l=1

∫ tk

tk−1

f1(s) d◦BH1(s) +

∫ tk

tk−1

g1(xs, ys) ds,

x(t)− x(t−k ) = Ik(x(tk)) +

n∗∑
i=1

∫ t−Ti

tk−Ti

x(s) ds

+

∫ t

tk

f1(s) d◦BH1(s) +

∫ t

tk

g1(xs, ys) ds.

Adding these together, we get

x(t) =x(0) +
∑

0≤tk≤t

Ik(x(tk)) +

n∗∑
i=1

∫ t−Ti

−Ti

x(s) ds

+

∫ t

0

f1(s) d◦BH1(s) +

∫ t

0

g1(xs, ys) ds,



Impulsive Functional Stochastic Differential Equations 459

x(t) =φ(0) +
∑

0≤tk≤t

Ik(x(tk)) +

n∗∑
i=1

∫ 0

−Ti

x(s) ds

+

n∗∑
i=1

∫ t−Ti

0

x(s) ds+

∫ t

0

f1(s) d◦BH1(s) +

∫ t

0

g1(xs, ys) ds.

If x satisfies the integral equation (3.2), then x is a solution of the problem (3.1).

Let t ∈ [0, b] \ {t1, . . . , tm} and

x(t) =φ(0) +
∑

0≤tk≤t

Ik(x(tk)) +

n∗∑
i=1

∫ 0

−Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

x(s) ds+

∫ t

0

f1(s) d◦BH1(s) +

∫ t

0

g1(xs, ys) ds.

Similarly,

y(t) =φ(0) +
∑

0≤tk≤t

Ik(y(tk)) +

n∗∑
i=1

∫ 0

−Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

y(s) ds+

∫ t

0

f2(s) d◦BH2(s) +

∫ t

0

g2(xs, ys) ds. �

This lemma leads to the definition of a solution.

Definition 3.2. Given φ, φ ∈ DF0
, an Rn-valued stochastic process z =

(x, y) and {z(t) : t ∈ [−r, b]} is said to be a solution of the problem (1.1) if

z(t) is measurable and Ft-adapted, for each t > 0, (x(t), y(t)) = (φ(t), φ(t)) on

[−r, 0], ∆z|t=tk = (Ik(x(t−k )), Ik(x(t−k ))), k = 1, . . . ,m, the restriction of z( · , · )
to [0, b) \ {t1, . . . , tm} is continuous, z satisfies the integral equation

x(t) = φ(t) ∈ DF0 , t ∈ [−r, 0],

x(t) = φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

x(s) ds+

∫ t

0

f1(s) d◦BH1(s)

+

∫ t

0

g1(s, xs, ys) ds +
∑

0≤tk≤t

Ik(x(tk)), t ∈ [0, b],

y(t) = φ(t) ∈ DF0 , t ∈ [−r, 0],

y(t) = φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

y(s) ds+

∫ t

0

f2(s) d◦BH2(s)

+

∫ t

0

g2(s, xs, ys) ds+
∑

0≤tk≤t

Ik(y(tk)), t ∈ [0, b].
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First, we will list the following hypotheses which will be imposed in our main

theorem. Throughout this section:

(H1) The function f i : J → Rn satisfies∫ b

0

‖f i(t)‖2 dt <∞ for all t ∈ J .

(H2) There exist functions αi, βi ∈ L1([0, b],R+) and R > 0 such that

E |gi(t, x, y)− gi(t, x, y)|2 ≤ αi(t)‖x− x‖2DF0
+ βi(t)‖y − y‖2DF0

,

for all x, y, x, y ∈ DF0
with ‖x‖2DF0

, ‖x‖2DF0
≤ R and almost every t

in [0, b].

(H3) There exist constants dk ≥ 0 and dk ≥ 0, k = 1, . . . ,m, such that

|Ik(x)− Ik(x)|2 ≤ dk|x− x|2 and |Ik(y)− Ik(y)|2 ≤ dk|y − y|2

for all x, y, x, y ∈ Rn and almost every t ∈ [0, b].

For our main considerations on the problem (1.1), a Preov fixed point is used

to investigate the existence and uniqueness of solutions for systems of impulsive

stochastic differential equations.

Theorem 3.3. Assume that (H1)–(H3) are satisfied and consider the matrix

M =



√√√√1

τ
+ 3m

m∑
k=1

dk
1√
τ

1√
τ

√√√√1

τ
+ 3m

m∑
k=1

dk

 ,

where τ is sufficiently large. If M converges to zero, then the problem (1.1) has

a unique solution on [−r, b].

Proof. Consider the operator N : DFb
×DFb

→ DFb
×DFb

defined by

N(x, y) = (N1(x, y), N2(x, y)), (x, y) ∈ DFb
×DFb

,

where

(3.4) N1(x, y)(t) =



φ(t) ∈ DF0
, t ∈ [−r, 0],

φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

x(s) ds+

∫ t

0

f1(s) d◦BH1(s)

+

∫ t

0

g1(s, xs, ys) ds+
∑

0<tk<t

Ik(x(t−k )), t ∈ [0, b],



Impulsive Functional Stochastic Differential Equations 461

and

(3.5) N2(x, y)(t) =



φ(t) ∈ DF0
, t ∈ [−r, 0],

φ(0) +

n∗∑
i=1

∫ 0

Ti

φ(s) ds

+

n∗∑
i=1

∫ t−Ti

0

y(s) ds+

∫ t

0

f2(s) d◦BH2(s)

+

∫ t

0

g2(s, xs, ys) ds+
∑

0<tk<t

Ik(y(t−k )), t ∈ [0, b].

The operator in (3.4) and (3.5) is well defined given (x, y) ∈ DFb
×DFb

. We shall

use Theorem 2.11 to prove that N has a fixed point. Indeed, let (x, y), (x, y) ∈
DFb
×DFb

, then for each t ∈ [−r, b] we have

|N1(x(t), y(t))−N1(x(t), y(t))|2

=

∣∣∣∣ n∗∑
i=1

∫ t−Ti

0

x(s) ds+

∫ t

0

g1(s, xs, ys) ds+
∑

0<tk<t

Ik(x(t−k )

−
n∗∑
i=1

∫ t−Ti

0

x(s) ds−
∫ t

0

g1(s, xs, ys) ds−
∑

0<tk<t

Ik(x(t−k ))

∣∣∣∣2.
By the inequality (Lemma 2.5), we get

E |N1(x(t), y(t))−N1(x(t), y(t))|2

≤ 3b

∫ t

0

E |g1(s, xs, ys)− g1(s, xs, ys)|2 ds

+ 3m
m∑
k=1

E |Ik(x(tk))− Ik(x(tk))|2 + 3n∗b

∫ t

0

E |x(s)− x(s)|2 ds.

Therefore, by conditions (H1)–(H3),

E |N1(x(t), y(t))−N1(x(t), y(t))|2

≤ 3b

∫ t

−r

(
α1(s)E |x(s)− x(s)|2 + β1(s)E |y(s)− y(s)|2

)
ds

+ 3m

m∑
k=1

dkE |x(tk)− x(tk)|2 + 3n∗b

∫ t

0

E|x(s)− x(s)|2 ds

≤
∫ t

0

(3bα1(s) + 3n∗b)E |x(s)− x(s)|2ds

+

∫ t

0

(3bβ1(s))E |y(s)− y(s)|2 ds+ 3m

m∑
k=1

dkE |x(tk)− x(tk)|2,
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and therefore, since (x(s), y(s)) = (x(s), y(s)) over the interval [−r, 0], by taking

supremum in the above inequality,

sup
h∈[0,t]

E |N1(x(h), y(h))−N1(x(h), y(h))|2

≤
∫ t

0

α(s)eτα̂(s)e−τα̂(s) sup
θ∈[0,s]

E |x(θ)− x(θ)|2 ds

+

∫ t

0

α(s)eτα̂(s)e−τα̂(s) sup
θ∈[0,s]

E |y(θ)− y(θ)|2 ds

+ 3m

m∑
k=1

dke
τα̂(s)e−τα̂(s)E |x(tk)− x(tk)|2

≤
∫ t

0

α(s)eτα̂(s) ds‖x− x‖2∗ +

∫ t

0

α(s)eτα̂(s) ds‖y − y‖2∗

+ 3m

m∑
k=1

dke
τα̂(s)e−τα̂(s)E |x(tk)− x(tk)|2

≤ 1

τ

∫ t

0

(eτα̂(s))
′
ds‖x− x‖2∗

+
1

τ

∫ t

0

(eτα̂(s))
′
ds‖y − y‖2∗ + 3m

m∑
k=1

dke
τα̂(s)‖x− x‖2∗

≤
(

1

τ
+ 3m

m∑
k=1

dk

)
eτα̂(t)‖x− x‖2∗ +

1

τ
eτα̂(t)‖y − y‖2∗.

We deduce

e−τα̂(t) sup
h∈[0,t]

E |N1(x(h), y(h))−N1(x(h), y(h))|2

≤
(

1

τ
+ 3m

m∑
k=1

dk

)
‖x− x‖2∗ +

1

τ
‖y − y‖2∗,

where ‖x‖2∗ is the Bielecki-type norm on DFb
defined by

‖x‖2∗ = sup
h∈[0,t]

E |x(h, · )|2e−τα̂(t),

where

α(s) =

0 for t ∈ [−r, 0],

max {3bα1(s) + 3n∗b, 3bβ1(s)} for t ∈ [0, b]

and

α̂(t) =

∫ t

0

α(s) ds, t ∈ [−r, b].

This yields

‖N1(x, y)−N1(x, y)‖2∗ ≤
(

1

τ
+ 3m

m∑
k=1

dk

)
‖x− x‖2∗ +

1

τ
‖y − y‖2∗.
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Using the fact that for all a, b ≥ 0 we have
√
a+ b ≤

√
a+
√
b, we conclude that

(3.6) ‖N1(x, y)−N1(x, y)‖∗ ≤

√√√√1

τ
+ 3m

m∑
k=1

dk

 ‖x− x‖∗ +
1√
τ
‖y − y‖∗.

Similar computations for N2 yield

(3.7) ‖N2(x, y)−N2(x, y)‖∗ ≤
1√
τ
‖x− x‖∗ +

√√√√1

τ
+ 3m

m∑
k=1

dk

 ‖y − y‖∗.
Now, (3.6), (3.7) can be put together and be rewritten as

‖N(x, y)−N(x, y)‖∗ =

(
‖N1((x, y)−N1(x, y)‖∗
‖N2(x, y)−N2(x, y)‖∗

)

≤



√√√√1

τ
+ 3

m∑
k=1

dk
1√
τ

1√
τ

√√√√1

τ
+ 3m

m∑
k=1

dk


(
‖x− x‖∗
‖y − y‖∗

)
.

Hence

‖N(x, y)−N(x, y)‖∗ ≤M

(
‖x− x‖∗
‖y − y‖∗

)
,

where

M =



√√√√1

τ
+ 3m

m∑
k=1

dk
1√
τ

1√
τ

√√√√1

τ
+ 3m

m∑
k=1

dk


.

We choose τ sufficiently large so that the matrix ‖M‖ < 1. Then M is nonnega-

tive, I −M is nonsingular and (I −M)−1 = 1 +M +M2 + . . . From Lemma 2.9

we obtain that M converges to zero. As a consequence of Perov’s fixed point the-

orem, N has a unique fixed point (x, y) ∈ DFb
×DFb

which is a unique solution

of the problem (1.1). The result follows from Perov’s fixed point theorem. �

For the next result we can prove the a priori estimates of solution for problem

(1.1) by similar arguments to those used to prove Theorem 3.3.

Theorem 3.4. Assume hypotheses in Theorem 3.3 hold, with (H2) replaced

by:
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(H2) There exist positive constants α̃i, β̃i, i = 1, 2, such that

E |gi(t, x, y)− gi(t, x, y)|2 ≤ α̃i‖x− x‖2DF0
+ β̃i‖y − y‖2DF0

,

for all x, y, x, y ∈ DF0 and almost every t ∈ [0, b]. Consider the matrix

M∗ =

(
A1 A2,

A3 A4

)
,

where

A1 =

√√√√3bα̃1 + 3n∗b+ 3m

m∑
k=1

dk , A2 =

√
3bβ̃1 ,

A3 =
√

3bα̃2 , A4 =

√√√√3bβ̃2 + 3n∗b+ 3m

m∑
k=1

dk .

If M∗ converges to zero, then the problem (1.1) has a unique solution.

4. Existence results

In this section we present the existence result under a nonlinearity gi, i = 1, 2,

satisfying a Nagumo-type growth conditions:

(H4) There exist functions Λi ∈ L1(J,R+), i = 1, 2, such that

sup
t∈J

E |f i(t)|2 ≤ Λi(t) for all t ∈ J.

(H5) There exist a function pi ∈ L1(J,R+) and a continuous nondecreasing

function ψi : [0,∞)→ (0,∞), i = 1, 2, such thatE |g1(t, x, y)|2 ≤ p1(t)ψ1

(
‖x‖2DF0

+ ‖y‖2DF0

)
,

E |g2(t, x, y)|2 ≤ p2(t)ψ2

(
‖x‖2DF0

+ ‖y‖2DF0

)
,

with ∫ υ(t)

υ(0)

ds

s+ Φ(s)
≤
∫ b

0

m(s) ds <

∫ ∞
υ(0)

ds

s+ Φ(s)
,

where

p(t) =

2∑
i=1

pi(t) and Φ =

2∑
i=1

ψi(t), Λ(t) =

2∑
i=1

Λi(t),

and υ(0) = bC1 + (1− bC4)
(
‖φ‖2DF0

+ ‖φ‖2DF0

)
. Let

C1 = 6
(
E |φ(0)|2 + E |φ(0)|2

)
+ 6n∗r

(
‖φ‖2DF0

+ ‖φ‖2DF0

)
+ 6m

( m∑
k=1

ck +

m∑
k=1

ck

)
+ 48CT 2 + 12C(H∗, T )‖Λ(t)‖L1 ,
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C∗ = 6b, C4 = 6n∗, m(t) = max {bC∗p(t), C4}, and

C(H∗, T ) = max {C(H1, T ), C(H2, T )},

for all x, y ∈ DF0 .

(H6) There exist positive constants ck, c̃k, k = 1, . . . ,m, such that

E |Ik(xk)|2 ≤ ck, E |Ik(yk)|2 ≤ ck for all x, y ∈ Rn.

Theorem 4.1. Assume that (H4)–(H6) hold. Then (1.1) possesses at least

one solution on [−r, b].

Proof. Transform the problem (1.1) into a fixed point problem. Consider

the operator N defined in Theorem 3.3. In order to apply Theorem (2.13), we

first show that N is completely continuous. The proof will be given in several

steps.

Step 1. N = (N1, N2) is continuous. Let (xn, yn) be a sequence such that

(xn, yn)→ (x, y) ∈ DFb
×DFb

as n→∞. Then

|N1(xn(t), yn(t))−N1(x(t), y(t))|

=

∣∣∣∣ n∗∑
i=1

∫ t−Ti

0

xn(s) ds+

∫ t

0

g1(s, (xn)s), (yn)s) ds+
∑

0<tk<t

Ik(xn(t−k ))

−
n∗∑
i=1

∫ t−Ti

0

x(s) ds−
∫ t

0

g1(s, xs, ys) ds−
∑

0<tk<t

Ik(x(t−k ))

∣∣∣∣.
Hence,

E |N1(xn(t), yn(t))−N1(x(t), y(t))|2

≤ 3E
∣∣∣∣ ∫ t

0

g1(s, (xn)s), (yn)s)− g1(s, xs, ys) ds

∣∣∣∣2
+ 3m

m∑
k=1

E|Ik(xn(tk))− Ik(x(tk))|2 + 3

n∗∑
i=1

∫ t−Ti

0

E |xn(s)− x(s)|2 ds.

From Lemma 2.5 and thanks to (H4)–(H6) we obtain that for any t ∈ [0, b],

E |N1(xn(t), yn(t))−N1(x(t), y(t))|2

≤ 3b

∫ t

0

E
∣∣g1(s, (xn)s), (yn)s))− g1(s, xs, ys)

∣∣2 ds
+ 3m

m∑
k=1

E|Ik(xn(tk))− Ik(x(tk))|2 + 3

n∗∑
i=1

∫ t−Ti

0

E |xn(s)− xn(s)|2 ds.
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Since gi is a Carathéodory function, i = 1, 2, Ik, Ik are continuous functions, by

the Lebesgue dominated convergence theorem, we get

sup
t∈J

E |N1(xn(t), yn(t))−N1(x(t), y(t))|2 ≤ 3bE ‖g1( · , xn, yn)− g1( · , x, y)‖2L2

+ 3m

m∑
k=1

E |Ik(xn(tk))− Ik(x(tk))|2 + 3

n∗∑
i=1

∫ t−Ti

0

E |xn(s)− x(s)|2 ds→ 0

as n→∞. Similarly,

sup
t∈J

E |N2(xn(t), yn(t))−N2(x(t), y(t))|2 ≤ 3bE ‖g2( · , xn, yn)− g2( · , x, y)‖2L2

+ 3m

m∑
k=1

E |Ik(yn(tk))− Ik(y(tk))|2 + 3

n∗∑
i=1

∫ t−Ti

0

E |yn(s)− y(s)|2 ds→ 0

as n→∞. Thus N is continuous.

Step 2. N maps bounded sets into bounded sets in DFb
× DFb

. Indeed, it is

enough to show that for any q > 0 there exists a positive constant l such that

for each (x, y) ∈ Bq =
{

(x, y) ∈ DFb
×DFb

: ‖x‖2DFb
≤ q, ‖y‖2DFb

≤ q
}

, we have

‖N(x, y)‖2DFb
≤ l = (l1, l2).

Then, for each t ∈ J ,

E |N1(x(t), y(t))|2 ≤ 6E |φ(0)|2 + 6

n∗∑
i=1

∫ Ti

0

E |φ(−s)|2 ds

+ 6

n∗∑
i=1

∫ t−Ti

0

E |x(s)|2 ds+ 6E
∣∣∣∣∫ t

0

f1(s) d◦BH1(s)

∣∣∣∣2
+ 6b

∫ t

0

E |g1(s, xs, ys)|2 ds+ 6m
∑

0<tk<t

E |Ik(x(t−k )|2.

This implies by (H4)–(H6) and Lemma 2.5 that for each t ∈ J ,

E |N1(x(t), y(t))|2 ≤ 6E |φ(0)|2 + 6

n∗∑
i=1

∫ Ti

0

E |φ(−s)|2 ds

+ 6

n∗∑
i=1

∫ t−Ti

0

E |x(s)|2 ds+ 12C(H1, T )‖Λ1‖L1

+ 6b‖p1‖L1ψ1(2q) + 6m

m∑
k=1

ck + 24CT 2.

Therefore

E |N1(x(t), y(t))|2 ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0
+ 6n∗qb+ 12C(H1, T )‖Λ1‖L1

+ 6b‖p3‖L1ψ1(2q)d+ 6m

m∑
k=1

ck + 24CT 2 := l1.
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Similarly, we have

E |N2(x(t), y(t))|2 ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0
+ 6n∗qb+ 12C(H2, T )‖Λ2‖L1

+ 6b‖Λ2‖L1ψ2(2q) + 6m

m∑
k=1

ck + 24CT 2 := l2.

Step 3. N maps bounded sets into equicontinuous sets of DFb
×DFb

. Let Bq
be a bounded set in DFb

×DFb
as in Step 2. Let τ1, τ2 ∈ J , τ1 < τ2, and u ∈ Bq.

Thus we have

E |N1(x(τ2), y(τ2))−N1(x(τ1), y(τ1))|2

≤ 4

n∗∑
i=1

∫ τ2−Ti

τ1−Ti

E |x(s)|2 ds+ 4(τ2 − τ2)

∫ τ2

τ1

E |g1(s, xs, ys)|2 ds

+ 4E
∣∣∣∣∫ τ2

τ1

f1(s) d◦BH1(s)

∣∣∣∣2 + 4m
∑

τ1<tk<τ2

E |Ik(x(tk))|2

≤ 4

n∗∑
i=1

∫ τ2−Ti

τ1−Ti

E |x(s)|2 ds+ 8C(H1, T )

∫ τ2

τ1

E |f1(s)|2 ds+ 16C(τ2 − τ1)2

+ 4b

∫ τ2

τ1

E |g1(s, xs, ys)|2 ds+ 4m
∑

τ1<tk<τ2

E |Ik(x(tk))|2

≤ 4n∗(τ2 − τ1)q + 8C(H1, T )

∫ τ2

τ1

Λ1(s) ds+ 16C(τ2 − τ1)2

+ 4bψ1(2q)

∫ τ2

τ1

p1(s) ds+ 4m
∑

τ1<tk<τ2

ck.

Similarly,

E |N2(x(τ2),y(τ2))−N2(x(τ1), y(τ1))|2

≤ 4n∗(τ2 − τ1)q + 8C(H2, T )

∫ τ2

τ1

Λ2(s) ds

+ 4bψ2(2q)

∫ τ2

τ1

p2(s) ds+ 4m
∑

τ1<tk<τ2

ck + 16C(τ2 − τ1)2.

The right-hand term tends to zero as |τ2−τ1| → 0. As a consequence of Steps 1–

3 together with the Arzelá–Ascoli theorem, we conclude that N maps Bq into

a precompact set in DFb
×DFb

.

Step 4. (N(Bq)(t) is precompact in Rn × Rn. As a consequence of Steps 2

and 3, together with the Arzelá–Ascoli theorem, it suffices to show that N maps

Bq into a precompact set in Rn × Rn. Let 0 < t < b be fixed and let ε be a real
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number satisfying 0 < ε < t. For (x, y) ∈ Bq we define

Nε
1 (x, y) =φ(0) +

n∗∑
i=1

∫ 0

−Ti

φ(s) ds+

n∗∑
i=1

∫ t−ε−Ti

0

x(s) ds

+

∫ t−ε

0

f1(s) d◦BH1(s) +

∫ t−ε

0

g1(s, xs, ys) ds+
∑

0<tk<t−ε
Ik(x(t−k )),

and

Nε
2 (x, y) =φ(0) +

n∗∑
i=1

∫ 0

−Ti

φ(s) ds+

n∗∑
i=1

∫ t−ε−Ti

0

y(s) ds

+

∫ t−ε

0

f2(s) d◦BH2(s) +

∫ t−ε

0

g2(s, xs, ys) ds+
∑

0<tk<t−ε
Ik(y(t−k )).

The set Hε =
{
Nε(x, y)(t) = (Nε

1 (x, y)(t), Nε
2 (x, y)(t)) : (x, y) ∈ Bq

}
, is precom-

pact in Rn × Rn for every ε and 0 < ε < t. Moreover, for every (x, y) ∈ Bq, we

have

E ‖N1(x, y)−Nε
1 (x, y)‖2 ≤ 4n∗εq + 8C(H1, T )

∫ t

t−ε
Λ1(s) ds

+ 4bψ1(2q)

∫ t

t−ε
p1(s) ds+ 4m

∑
t−ε<tk<t

ck + 16CT 2ε.

Similarly,

E ‖N2(x, y)−Nε
2 (x, y)‖2 ≤ 4n∗εq + 8C(H2, T )

∫ t

t−ε
Λ2(s) ds

+ 4bψ2(2q)

∫ t

t−ε
p2(s) ds+ 4m

∑
t−ε<tk<t

ck + 16CT 2ε.

Therefore, there are precompact sets arbitrarily close to the set Hε. Hence, the

set H =
{
N(x, y)(t) = (N1(x, y)(t), N2(x, y)(t)) : (x, y) ∈ Bq

}
is precompact in

Rn × Rn and the right-hand term tends to 0 uniformly in t as ε → 0+. Hence

the relative compactness of N(Bq)(t) for t ≥ 0 follows. By the Arzela–Ascoli

theorem, we conclude that N : DFb
×DFb

→ DFb
×DFb

is completely continuous.

Step 4. A priori bounds. Now it remains to show that the set

A = {(x, y) ∈ DFb
×DFb

: (x, y) = λN(x, y), λ ∈ (0, 1)}

is bounded. Let (x, y) ∈ A. Then x = λN1(x, y) and y = λN2(x, y) for some

0 < λ < 1. Thus, for t ∈ J , we have

x(t) =λ

(
φ(0) +

n∗∑
i=1

∫ 0

−Ti

φ(s) ds+

n∗∑
i=1

∫ t−Ti

0

x(s) ds

+

∫ t

0

f1(s) d◦BH1(s) +

∫ t

0

g1(s, xs, ys) ds+
∑

0<tk<t

Ik(x(t−k )

)
,
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and φ(t) ∈ DF0
for t ∈ [−r, 0]. This implies, by (H4)–(H6) and Lemma 2.5, that,

for each t ∈ J ,

E |x(t)|2 ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0

+ 6n∗

∫ t

0

E |x(s)|2 ds+ 12C(H1, T )

∫ t

0

Λ1(s) ds

+ 24CT 2 + 6b

∫ t

0

p1(s)ψ1

(
‖xs‖2DF0

+ ‖ys‖2DF0

)
ds+ 6m

m∑
k=1

ck,

and

E |y(t)|2 ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0

+ 6n∗

∫ t

0

E |y(s)|2 ds+ 12C(H2, T )

∫ t

0

Λ2(s) ds

+ 24CT 2 + 6b

∫ t

0

p2(s)ψ2

(
‖xs‖2DF0

+ ‖ys‖2DF0

)
ds+ 6m

m∑
k=1

ck.

Consider functions µ, µ defined on J by

µ(t) = sup {E |x(s)|2 : 0 ≤ s ≤ t}, t ∈ J,

µ(t) = sup {E |y(s)|2 : 0 ≤ s ≤ t}, t ∈ J.

Since

‖xs‖2DF0
=

∫ 0

−r
E |x(s+ θ)|2 dθ =

∫ s

−r+s
E |x(θ)|2 dθ,

then

‖xs‖2DF0
≤
∫ 0

−r
E |x(θ)|2 dθ +

∫ s

0

E |x(θ)|2 dθ ≤
∫ 0

−r
E |x(θ)|2 dθ + bµ(t),

and

‖ys‖2DF0
≤
∫ 0

−r
E |y(θ)|2 dθ + bµ(t).

Hence

‖xs‖2DF0
≤ ‖φ‖2DF0

+ bµ(t) and ‖ys‖2DF0
≤ ‖φ‖2DF0

+ bµ(t).

Then, for t ∈ J , we have

µ(t) ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0

+ 6n∗

∫ t

0

µ(s) ds+ 12C(H1, T )

∫ t

0

Λ1(s) ds+ 24CT 2

+ 6b

∫ t

0

p1(s)ψ1

(
‖φ‖2DF0

+ bµ(t) + ‖φ‖2DF0
+ bµ(t)

)
ds+ 6m

m∑
k=1

ck.
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Similarly,

µ(t) ≤ 6E |φ(0)|2 + 6n∗r‖φ‖2DF0

+ 6n∗

∫ t

0

µ(s) ds+ 12C(H2, T )

∫ t

0

Λ2(s) ds+ 24CT 2

+ 6b

∫ t

0

p2(s)ψ2

(
‖φ‖2DF0

+ bµ(t) + ‖φ‖2DF0
+ bµ(t)

)
ds+ 6m

m∑
k=1

ck.

Thus, we have

µ(t) + µ(t) ≤ 6
(
E |φ(0)|2 + E |φ(0)|2

)
+ 6n∗r

(
‖φ‖2DF0

+ ‖φ‖2DF0

)
+ 6m

( m∑
k=1

ck +

m∑
k=1

ck

)
+ 48CT 2 + 6n∗

∫ t

0

(µ(s) + µ(s)) ds

+ 6b

2∑
i=1

∫ t

0

pi(s)ψi
(
‖φ‖2DF0

+ bµ(t) + ||φ||2DF0
+ bµ(t)

)
ds

+ 12C(H∗, T )

2∑
i=1

∫ t

0

Λi(s) ds,

where C(H∗, T ) = max {C(H1, T ), C(H2, T )}. We denote

p(t) =

2∑
i=1

pi(t) and Φ =

2∑
i=1

ψi(t), Λ(t) =

2∑
i=1

Λi(t).

We have

µ(t) + µ(t) ≤C1 + C4

(∫ t

0

µ(s) + µ(s)

)
ds

+ C∗

∫ t

0

p(s)Φ
(
b(µ(s) + µ(s)) + ‖φ‖2DF0

+ ‖φ‖2DF0

)
ds.

Put

C1 = 6(E |φ(0)|2 + E |φ(0)|2) + 6n∗r
(
‖φ‖2DF0

+ ‖φ‖2DF0

)
+ 6m

( m∑
k=1

ck +

m∑
k=1

ck

)
+ 48CT 2 + 12C(H∗, T )‖Λ(t)‖L1

and C∗ = 6b, C4 = 6n∗. Thus, we have

b(µ(t) + µ(t)) + ‖φ‖2DF0
+ ‖φ‖2DF0

≤ bC1 + (1− bC4)
(
‖φ‖2DF0

+ ‖φ‖2DF0

)
+ C4

(∫ t

0

b(µ(s) + µ(s)) + ‖φ‖2DF0
+ ‖φ‖2DF0

)
ds

+ bC∗

∫ t

0

p(s)Φ
(
b(µ(s) + µ(s)) + ‖φ‖2DF0

+ ‖φ‖2DF0

)
ds.
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Denote the right-hand side of the above inequality as υ(t). Then we have

υ(0) = bC1 + (1− bC4)
(
‖φ‖2DF0

+ ‖φ‖2DF0

)
,

b(µ(t) + µ(t)) + ‖φ‖2DF0
+ ‖φ‖2DF0

≤ υ(t) for a.e. t ∈ J,

and

υ′(t) = bC∗p(t)Φ
(
b(µ(t) + µ(t)) + ‖φ‖2DF0

+ ‖φ‖2DF0

)
+ C4

(
b(µ(t) + µ(t)) + ‖φ‖2DF0

+ ‖φ‖2DF0

)
.

Using the increasing character of Φ we obtain

υ′(t) ≤ bC∗p(t)Φ(υ(t)) + C4υ(t) ≤ m(t)(υ(t) + Φ(υ(t))) for a.e. t ∈ J,

where m(t) = max {bC∗p(t), C4}. This implies that, for each t ∈ [0, b],∫ υ(t)

υ(0)

ds

s+ Φ(s)
≤
∫ b

0

m(s) ds <

∫ ∞
υ(0)

ds

s+ Φ(s)
.

Consequently, there exists a constant K such that

b(µ(t) + µ(t)) + ‖φ‖2DF0
+ ‖φ‖2DF0

≤ υ(t) < K for each t ∈ J.

Now from the definition of µ, µ it follows that

E |x(t)|2 + E |y(t)|2 ≤ µ(t) + µ(t) ≤ K

b
for each t ∈ J.

Consequently, ‖x‖2DFb
≤ K/b and ‖y‖2DFb

≤ K/b. This shows that A is bounded.

As a consequence of Theorem 2.13 we deduce that N has a fixed point (x, y)

which is a solution to the problem (1.1). �

5. Some examples

In this, section we give examples to illustrate usefulness of our main results.

Example 5.1. Consider the system

(5.1)



dx(t) =
(xt + yt)

2

(t+ 1)(t+ 2)
dt+ x(t− 2) dt+ σ1 d

◦BH1(t)

a.e. t ∈ J := [0, b] \ {t1, t2, . . .},

dy(t) =
(xt + yt + 1)2

(t+ 1)(t+ 2)
dt+ y(t− 2) dt+ σ2 d

◦BH2(t),

a.e. t ∈ J := [0, b] \ {t1, t2, . . .},

x(t+k )− x(t−k ) = a1x(t−k ), k = 1, . . . ,m,

y(t+k )− y(t−k ) = b1y(t−k ), k = 1, . . . ,m,

x(t) = φ(t), t ∈ [−2, 0],

y(t) = φ(t), t ∈ [−2, 0],



472 M. Ferhat — T. Blouhi

where b > 1/2 and σ1, σ2, a1, b1 are positive constants,

φ(t) =

0 if t = 0,

t− 1/2 if t ∈ [−2, 0),
and φ(t) =

0 if t = 0,

t− 1/3 if t ∈ [−2, 0),

where

g1(t, x, y) =
(x+ y)2

(t+ 1)(t+ 2)
, f1(t) = σ1, I1(x) = a1x,

g2(t, x, y) =
(x+ y + 1)2

(t+ 1)(t+ 2)
, f2(t) = σ2, I1(y) = b1y.

Let R > 0 and x, x, y, y ∈ DF0
be such that

|g1(t, x, y)− g1(t, x, y)| ≤ 4R

(t+ 1)(t+ 2)
(|x− x|+ |y − y|),

|g2(t, x, y)− g2(t, x, y)| ≤ 4R+ 2

(t+ 1)(t+ 2)
(|x− x|+ |y − y|).

So

|g1(t, x, y)− g1(t, x, y)|2 ≤ 2

(
4R

(t+ 1)(t+ 2)

)2

(|x− x|2 + |y − y|2),

|g2(t, x, Y )− g2(t, x, y)|2 ≤ 2

(
4R+ 2

(t+ 1)(t+ 2)

)2

(|x− x|2 + |y − y|2).

Let (
8R

(t+ 1)(t+ 2)

)2

,

(
4R+ 2

(t+ 1)(t+ 2)

)2

∈ L1([0, b],R+)

with ‖x‖2DF0
, ‖x‖2DF0

≤ R. It is clear that

|I1(x)− I1(x)|2 ≤ a21|x− x|2, |I1(y)− I1(y)|2 ≤ b21|y − y|2.

Thanks to these assumptions, it is straightforward to check that (H1)–(H3) hold.

Let

Mb =


√

1

τ
+ 3ma21

1√
τ

1√
τ

√
1

τ
+ 3mb

2

1

 ,

where τ is sufficiently large. If Mb converges to zero, then the assumptions in

Theorem 3.3 are fulfilled and we can conclude that the system (5.1) has a unique

solution.
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Example 5.2. Consider the system

(5.2)



dx(t) =

(
1− qxt − yt −

axtyt
xt + pyt

)
dt+ x(t− 2) dt+ σ1 d

◦BH1(t),

a.e. t ∈ J := [0, b] \ {1/2},

dy(t) =

(
R0xtyt
xt + pyt

− yt
)
dt+ y(t− 2) dt+ σ2d

◦BH2(t),

a.e. t ∈ J := [0, b] \ {1/2},
x((1/2)+)− x((1/2)−) = a1x((1/2)−),

x((1/2)+)− x((1/2)−) = b1x((1/2)−),

x(t) = φ(t), t ∈ [−2, 0],

y(t) = φ(t), t ∈ [−2, 0],

where b > 1/2 and q, a, p, σ1, σ2, R0, a1, b1 are positive constants,

φ(t) =

0 if t = 0,

t− 1/2 if t ∈ [−2, 0),
and φ(t) =

0 if t = 0,

t− 1/3, if t ∈ [−2, 0),

where

g1(t, x, y) = 1− qx− y − axy

x+ py
, f1(t, x, y) = σ1, I1(x) = a1x,

g2(t, x, y) =
R0xy

x+ py
− y, f2(t, x, y) = σ2, I1(y) = b1y.

for x, x, y, y ∈ DF0 . We have

|g1(t,x, y)− g1(t, x, y)| ≤ q|x− x|+ |y − y|+
∣∣∣∣ axY

x+ pY
− axY

x+ py

∣∣∣∣
≤ q|x− x|+ |y − y|+ a

∣∣∣∣ xx(y − y)

(x+ py)(x+ py)

∣∣∣∣+ ap

∣∣∣∣ yy(x−X)

(x+ py)(x+ py)

∣∣∣∣
≤ (q + a)|x− x|+ a+ p

p
|y − y|,

and

|g2(t, x, y)−g2(t, x, y)| ≤ |y−y|+
∣∣∣∣ R0xy

x+ py
− R0xy

x+ py

∣∣∣∣ ≤ (1+R0)|y−y|+R0

p2
|x−x|.

So

|g1(t, x, Y )− g1(t, x, y)|2 ≤ 2(q + a)2|x− x|2 + 2

(
a+ p

p

)2

|y − y|2,

|g2(t, x, y)− g2(t, x, y)|2 ≤ 2(1 +R0)2|y − y|2 + 2
R2

0

p4
|x− x|2.

Thanks to these assumptions, it is straightforward to check that (H1), (H2) and

(H3) hold. Set

Ma = 2

(
B1 B2

B3 B4

)
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where

B1 =
√

6b(q + a)2 + 3b+ 3a1, B2 =
√

6b
a+ p

p
,

B3 =
√

12b
R0

p2
, B4 =

√
6b(1 +R0)2 + 3b+ 3b1.

If Ma converges to zero, then the assumptions in Theorem 3.4 are fulfilled, and

we can conclude that the system (5.2) has a unique solution.
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