Topological **M**ethods in **N**onlinear **A**nalysis Volume 51, No. 1, 2018, 243–257 DOI: 10.12775/TMNA.2017.059

O 2018 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

POISSON STRUCTURES ON CLOSED MANIFOLDS

Sauvik Mukherjee

ABSTRACT. We prove an h-principle for Poisson structures on closed manifolds. Equivalently, we prove an h-principle for symplectic foliations (singular) on closed manifolds. On open manifolds however the singularities could be avoided and it is a known result by Fernandes and Frejlich [7].

1. Introduction

In this paper we prove an h-principle for Poisson structures on closed manifolds. Similar results on open manifolds have been proved by Fernandes and Frejlich in [7]. We recall their result below.

Let M^{2n+q} be a C^{∞} -manifold equipped with a co-dimension-q foliation \mathcal{F}_0 and a 2-form ω_0 such that $(\omega_0^n)_{|T\mathcal{F}_0} \neq 0$. Denote by $\operatorname{Fol}_q(M)$ the space of co-dimension-q foliations on M identified with a subspace of $\Gamma(\operatorname{Gr}_{2n}(M))$, where $\operatorname{Gr}_{2n}(M) \xrightarrow{\operatorname{pr}} M$ is the Grassmann bundle, i.e. $\operatorname{pr}^{-1}(x) = \operatorname{Gr}_{2n}(T_xM)$ and $\Gamma(\operatorname{Gr}_{2n}(M))$ is the space of sections of $\operatorname{Gr}_{2n}(M) \xrightarrow{\operatorname{pr}} M$ with compact open topology. Define

$$\Delta_q(M) \subset \operatorname{Fol}_q(M) \times \Omega^2(M), \qquad \Delta_q(M) := \{ (\mathcal{F}, \omega) : \omega_{|T\mathcal{F}|}^n \neq 0 \}.$$

Obviously $(\mathcal{F}_0, \omega_0) \in \Delta_q(M)$. In this setting Fernandes and Frejlich proved the following

²⁰¹⁰ Mathematics Subject Classification. 53-xx.

Key words and phrases. Poisson structures; symplectic foliations; h-principle.

THEOREM 1.1 ([7]). Let M^{2n+q} be an open manifold with $(\mathcal{F}_0, \omega_0) \in \Delta_q(M)$ given. Then there exists a homotopy $(\mathcal{F}_t, \omega_t) \in \Delta_q(M)$ such that ω_1 is $d_{\mathcal{F}_1}$ -closed (actually exact).

In the language of Poisson geometry the above result takes the following form. Let $\pi \in \Gamma(\wedge^2 TM)$ be a bi-vectorfield on M, define $\# \pi \colon T^*M \to TM$ as $\# \pi(\eta) = \pi(\eta, -)$. If $\operatorname{Im}(\# \pi)$ is a regular distribution then π is called a regular bi-vectorfield.

THEOREM 1.2. Let M^{2n+q} be an open manifold with a regular bi-vectorfield π_0 on it such that $\operatorname{Im}(\#\pi)$ is an integrable distribution, then π_0 can be homotoped through such bi-vectorfields to a Poisson bi-vectorfield π_1 .

In Theorem 1.1 above, $d_{\mathcal{F}}$ is the tangential exterior derivative, i.e. for $\eta \in \Gamma(\wedge^k T^*\mathcal{F})$, $d_{\mathcal{F}}\eta$ is defined by the following formula:

$$d_{\mathcal{F}}\eta(X_0,...,X_k) = \sum_{i} (-1)^i X_i(\eta(X_0,...,\hat{X}_i,...,X_k)) + \sum_{i< j} (-1)^{i+j} \eta([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_k)$$

where $X_i \in \Gamma(T\mathcal{F})$. So if we extend a \mathcal{F} -leafwise closed k-form η , i.e. $d_{\mathcal{F}}\eta = 0$, to a form η' by the requirement that $\ker(\eta') = \nu \mathcal{F}$, where $\nu \mathcal{F}$ is the normal bundle to \mathcal{F} , then $d\eta' = 0$.

In order to fix the foliation in Theorem 1.1 the foliated manifold (M, \mathcal{F}) must be uniformly open. Let us define this notion.

DEFINITION 1.3 ([1]). A foliated manifold (M, \mathcal{F}) is called uniformly open if there exists a function $f: M \to [0, \infty)$ such that

- (a) f is proper,
- (b) f has no leafwise local maxima,
- (c) f is \mathcal{F} -generic.

Let us explain the notion \mathcal{F} -generic. In order to do so we need to define the singularity set $\Sigma^{(i_1,\ldots,i_k)}(f)$ for a map $f: M \to W$. $\Sigma^{i_1}(f)$ is the set

$$\{p \in M : \dim(\ker(df)_p) = i_1\}.$$

It was proved by Thom [9] that for most maps $\Sigma^{i_1}(f)$ is a submanifold of M. So we can restrict f to $\Sigma^{i_1}(f)$ and construct $\Sigma^{(i_1,i_2)}(f)$ and so on. In [9] it has been proved that there exists $\Sigma^{(i_1,\ldots,i_k)} \subset J^k(M,W)$ such that

$$(j^k f)^{-1} \Sigma^{(i_1,\dots,i_k)} = \Sigma^{(i_1,\dots,i_k)}(f).$$

Let us set $W = \mathbb{R}$ as this is the only situation we need. Let (M, \mathcal{F}) be a foliated manifold with a leaf F. Define the restriction map

$$r_F \colon J^k(M,\mathbb{R}) \to J^k(F,\mathbb{R}), \quad j^k f(x) \mapsto j^k(f_{|F|})(x).$$

Define a foliated analogue of the singularity set as

$$\Sigma_{\mathcal{F}}^{(i_1,\dots,i_k)} := \bigcup_{\{F \text{ is leaf of } \mathcal{F}\}} r_F^{-1} \Sigma^{(i_1,\dots,i_k)}.$$

DEFINITION 1.4 ([1]). A smooth real valued function $f: M \to \mathbb{R}$ is called \mathcal{F} -generic if the first jet $j^1 f \pitchfork \Sigma_{\mathcal{F}}^{(n)}$ and the second jet $j^2 f \pitchfork \Sigma_{\mathcal{F}}^{(i_1,i_2)}$ for all (i_1,i_2) .

We refer the reader to [1] for more details. Under this hypothesis Bertelson proved the following

THEOREM 1.5 ([1]). Let M be open, (M, \mathcal{F}) be a uniformly open foliated manifold, and ω_0 be a \mathcal{F} -leafwise non-degenerate 2-form, then ω_0 can be homotoped through \mathcal{F} -leafwise non-degenerate 2-forms to a \mathcal{F} -leafwise symplectic form.

She also constructed counter examples in [2] showing that without these conditions the above theorem fails. A contact analogue of Bertelson's result on any manifold (open or closed) has recently been proved in [3] by Borman, Eliashberg and Murphy. We will use this theorem in our argument.

THEOREM 1.6 ([3]). Let M^{2n+q+1} be any manifold equipped with a co-dimension-q foliation \mathcal{F} on it and let $(\alpha_0, \beta_0) \in \Gamma(T^*\mathcal{F} \oplus \wedge^2 T^*\mathcal{F})$ be given such that $\alpha_0 \wedge \beta_0^n$ is nowhere vanishing, then there exists a homotopy $(\alpha_t, \beta_t) \in \Gamma(T^*\mathcal{F} \oplus \wedge^2 T^*\mathcal{F})$ such that $\alpha_t \wedge \beta_t^n$ is nowhere vanishing and $\beta_1 = d_{\mathcal{F}}\alpha_1$.

DEFINITION 1.7. By a homotopy of singular foliation \mathcal{F}_t , $t \in I$, on a manifold M we mean a regular foliation \mathcal{F} on $M \times I$. The singular locus Σ_t of \mathcal{F}_t is given by

$$\Sigma_t = \{ (x,t) \in M \times \{t\} : \mathcal{F}_{(x,t)} \text{ not } \pitchfork \text{ to } M \times \{t\} \}.$$

Now we state the main theorem of this paper.

THEOREM 1.8. Let M^{2n+q} be a closed manifold with q = 2 and $(\mathcal{F}_0, \omega_0) \in \Delta_q(M)$ be given. Then there exists a homotopy \mathcal{F}_t of singular foliations on M with singular locus Σ_t and a homotopy of two forms ω_t such that the restriction of (ω_t) to $T\mathcal{F}_t$ is non-degenerate and ω_1 is $d_{\mathcal{F}_1}$ -closed, i.e. $(\mathcal{F}_1, \omega_1)$ is a symplectic foliation (singular).

It is known from Theorem 1.5.6 of [4] and Theorem 2.14 of [10] that a symplectic foliation determines a Poisson structure. Moreover, any foliation (singular or regular) with a leafwise non-degenerate 2-form determines a bivectorfield. Hence in terms of Poisson geometry Theorem 1.8 states

THEOREM 1.9. Let M^{2n+q} be a closed manifold with q = 2 and π_0 be a regular bi-vectorfield of rank 2n on it such $\text{Im}(\#\pi_0)$ is an integrable distribution. Then there exists a homotopy of bi-vectorfields π_t , $t \in I$, (not regular) such that $\text{Im}(\#\pi_t)$ is integrable and π_1 is a Poisson bi-vectorfield.

We organize the paper as follows. In Section 2 we shall recall the preliminaries of the theory of h-principle and of wrinkle maps which are needed in the proof of Theorem 1.8 proved in Section 3.

2. Preliminaries

We begin with the preliminaries of h-principle Let $X \to M$ be any fiber bundle, $X^{(r)}$ the space of r-jets of jerms of sections of $X \to M$ and $j^r f \colon M \to X^{(r)}$ the r-jet extension map of the section $f \colon M \to X$. A section $F \colon M \to X^{(r)}$ is called holonomic if there exists a section $f \colon M \to X$ such that $F = j^r f$. In the following we use the notation Op(A) to denote a small open neighbourhood of $A \subset M$ which is unspecified.

THEOREM 2.1 (Holonomic Approximation Theorem, [6]). Let $A \subset M$ be a polyhedron of positive co-dimension and $F_z: \operatorname{Op}(A) \to X^{(r)}$ be a family of sections parametrized by a cube I^m , $m = 0, 1, \ldots$, such that F_z is holonomic for $z \in \operatorname{Op}(\partial I^m)$. Then, for a given small $\varepsilon, \delta > 0$, there exists a family of δ -small (in the C^0 -sense) diffeotopies $h_z^{\tau}: M \to M, \tau \in [0, 1], z \in I^m$, and a family of holonomic sections $\widetilde{F}_z: \operatorname{Op}(h_z^1(A)) \to X^{(r)}, z \in I^m$, such that

- (a) $h_z^{\tau} = \mathrm{id}_M$ and $\widetilde{F}_z = F_z$ for all $z \in \mathrm{Op}(\partial I^m)$,
- (b) dist $(\widetilde{F}_z(x), (F_z)|_{\operatorname{Op} h^1_z(A)}(x)) < \varepsilon$ for all $x \in \operatorname{Op}(h^1_z(A))$.

REMARK 2.2. A relative version of Theorem 2.1 is also true. More precisely, let the sections F_z be already holonomic on Op(B) for a sub-polyhedron Bof A, then the diffeotopies h_z^{τ} can be made to be fixed on Op(B) and $\tilde{F}_z = F_z$ on Op(B).

Let \mathcal{R} be a subset of $X^{(r)}$, then \mathcal{R} is called a differential relation of order r. \mathcal{R} is said to satisfy an *h*-principle if any section $F: M \to \mathcal{R} \subset X^{(r)}$ can be homotopped to a holonomic section $\widetilde{F}: M \to \mathcal{R} \subset X^{(r)}$ through sections whose images are contained in \mathcal{R} .

Now we briefly recall preliminaries of wrinkled maps following [5]. Consider the maps $w, e: \mathbb{R}^{q-1} \times \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}^{q-1} \times \mathbb{R}$ defined by

$$w_s(y, x, z) = \left(y, z^3 + 3(|y|^2 - 1)z - \sum_1^s x_i^2 + \sum_{s+1}^{2n} x_i^2\right),\\ e_s(y, x, z) = \left(y, z^3 + 3|y|^2 z - \sum_1^s x_i^2 + \sum_{s+1}^{2n} x_i^2\right),$$

where $y \in \mathbb{R}^{q-1}$, $z \in \mathbb{R}$ and $x \in \mathbb{R}^{2n}$. Observe that the singular locus of w_s is

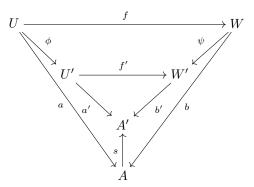
$$\Sigma(w_s) = \{ x = 0, \ z^2 + |y|^2 = 1 \}.$$

Let D be the disc enclosed by $\Sigma(w_s)$, i.e. $D = \{x = 0, z^2 + |y|^2 \le 1\}$.

A fibered map over B is given by a map $f: U \to V$, where $U \subset M$ and $V \subset Q$ with submersions $a: U \to B$ and $b: V \to B$ such that $b \circ f = a$.

Denote by T_BM and T_BQ , the distributions, i.e. subbundles ker $(a) \subset TM$ and ker $(b) \subset TQ$, respectively. The fibered differential $df_{|T_BM}$ is denoted by d_Bf . A fibered submersion is a map f as above such that d_Bf is fiberwise surjective. Similarly, we can define a fibered epimorphism $\phi: T_BM \to T_BQ$ and a homotopy of fibered epimorphism is the family of fibered epimorphisms ϕ_t .

Now we define the equivalence of fibered maps. Consider two fibered maps $f: U \to V$ and $f': U' \to V'$ over the base B and B' with submersions a, b and a', b', respectively. f and f' are called equivalent if there exist open subsets $A \subset B$, $A' \subset B', W \subset V, W' \subset V'$ with diffeomorphisms $\phi: U \to U', \psi: W \to W'$ and $s: A \to A'$ such that the following diagram commutes:



Observe that, if we consider the projection on first k factors, where k < q-1, then w_s is a fibered map.

DEFINITION 2.3 ([5]). A fibered map $f: M^{2m+q} \to Q^q$ between smooth manifolds is called a fibered wrinkled map if there exists a disjoint union of open subsets $U_1, \ldots, U_l \subset M$ such that $f_{|M-U}$ is a fibered submersion, where $U = \bigcup_{i=1}^{l} U_i$ and $f_{|U_i}$ is equivalent to w_s , for some s. It is called an embryo if $f_{|U_i}$ is equivalent to e_s , for some s.

A special wrinkle map is a map $\hat{\alpha} \colon \Omega \times \mathbb{R} \to \mathbb{R}^n$, $(\Omega \subset \mathbb{R}^{n-1}$ – open) given by

$$\widehat{\alpha}(x_1,\ldots,x_n)=(x_1,\ldots,x_{n-1},\alpha(x_1,\ldots,x_n)),$$

where α is given by

$$\alpha(x_1,\ldots,x_n) = x_n^3 - 3\mu_1(x_1,\ldots,x_{n-1})x_n + \mu_2(x_1,\ldots,x_{n-1}),$$

where μ_1, μ_2 are arbitrary functions. The singularity set Σ of $\hat{\alpha}$ is given by

$$\Sigma = \{ (x_1, \dots, x_{n-1}) : x_n^2 = \mu_1(x_1, \dots, x_{n-1}) \}.$$

We refer to [5] for more details on special wrinkles.

Let $p: \mathbb{R}^{2n+q} \to \mathbb{R}^{2n+q-1}$ be the projection on the first 2n+q-1 factors and let $\beta: [a, b] \to \mathbb{R}$ be a 1-dimensional wrinkle, i.e. β is a Morse function with two critical points c and d, respectively with c the maximum and d the minimum.

Then $\beta(c) - \beta(d)$ is called the span of the wrinkle β . If $f = \hat{\alpha}$ is a special wrinkle then for each $x' \in \Omega$ the restriction $\alpha_{|p^{-1}(x')}$ is either non-singular, a wrinkle or an embryo. The function $s_f(x') = \operatorname{span}(\alpha_{|p^{-1}(x')})$ is called the span function of the wrinkle f. The base of f is $p(\Sigma)$. A wrinkle is called small if both its base and span are small.

We refer the reader to [5] for more details. By combining Lemmas 2.1B and 2.2B of [5] we get the following theorem.

THEOREM 2.4 ([5]). Let $g: I^n \to I^q$ be a fibered submersion over I^k and $\theta: I^n \to I^n$ be a fibered wrinkled map over I^k with one wrinkle. Then there exists a fibered wrinkled map ψ with very small wrinkles and which agrees with θ near ∂I^n such that $g \circ \psi$ is a fibered wrinkled map.

For the definition of ψ in the conclusion of Theorem 2.4 above, see Appendix A. But it does not contain a proof to which we refer [5].

3. Main theorem

In this section we prove Theorem 1.8. Consider $\widetilde{M} = M \times \mathbb{R}$ and let us denote the co-dimension-q foliation $\mathcal{F}_0 \times \mathbb{R}$ on \widetilde{M} by $\widetilde{\mathcal{F}}$ with a $\widetilde{\mathcal{F}}$ -leafwise one form α_0 such that $\alpha_0(\partial_s) = 1$ and $\ker(\alpha_0)_{|(x,s)} = T_x \mathcal{F}_0$. Observe that, if we extend ω_0 to \widetilde{M} by the requirement that $\omega_0(\partial_s, -) = 0$, then $(\alpha_0 \wedge \omega_0^n)_{|T\widetilde{\mathcal{F}}} \neq 0$. Let $(\omega_0)_{|T\widetilde{\mathcal{F}}} = \beta_0$. Then (α_0, β_0) is a $\widetilde{\mathcal{F}}$ -leafwise almost contact structure. According to Theorem 1.6 there exists a homotopy of pairs (α_t, β_t) defining a homotopy of $\widetilde{\mathcal{F}}$ -leafwise almost contact structures consisting of a $\widetilde{\mathcal{F}}$ -leafwise one form α_t and a $\widetilde{\mathcal{F}}$ -leafwise two form β_t such that $\beta_1 = d_{\widetilde{\mathcal{F}}}\alpha_1$, i.e. (α_1, β_1) is a $\widetilde{\mathcal{F}}$ -leafwise contact structure. Now let $L_t = \ker(\alpha_t) \subset T\widetilde{\mathcal{F}}$ and $G_t^1 = L_t \oplus \nu \widetilde{\mathcal{F}} \oplus \mathbb{R}$, where $\nu \widetilde{\mathcal{F}}$ is the normal bundle.

Now observe that the embedding $f_0: M \to M \times \{0\} \hookrightarrow \widetilde{M} \times \mathbb{R}$ is \pitchfork to $\widetilde{\mathcal{F}} \times \mathbb{R}$ and $\operatorname{Im}(df_0) \cap (T\widetilde{\mathcal{F}} \times \mathbb{R}) = L_0$. First extend β_t to \widetilde{M} and call it $\widetilde{\beta}_t$ in such a way that $\ker(\widetilde{\beta}_t) = \nu \widetilde{\mathcal{F}}$. Let $X_t = \ker(\beta_t)$ be the vector field on \widetilde{M} and consider the family of 2-dimensional foliations \mathcal{G}_t generated by X_t and ∂_w , where w is the \mathbb{R} -variable in $\widetilde{M} \times \mathbb{R}$. Observe that $\alpha_t \wedge dw$ is a \mathcal{G}_t -leafwise symplectic form.

Now we shall perturb f_0 by a homotopy of immersions f_t so that f_t will be tangent to $\widetilde{\mathcal{F}} \times \mathbb{R}$ only on Σ_t and on $M - \Sigma_t$, $f_t \pitchfork \widetilde{\mathcal{F}} \times \mathbb{R}$ (observe that nontransversallity does not mean tangency in this context), i.e. $\operatorname{Im}(df_t) \cap (T\widetilde{\mathcal{F}} \times \mathbb{R})$ is of dimension 2n and $\operatorname{Im}(df_t) \cap (T\widetilde{\mathcal{F}} \times \mathbb{R})$ is close to L_t . As $\widetilde{\beta}_t^n_{|L_t} \neq 0$, we conclude that the restriction of $\widetilde{\beta}_t + \alpha_t \wedge dw$ is non-degenerate on $\operatorname{Im}(df_t) \cap T\widetilde{\mathcal{F}} \times \mathbb{R}$. Hence we only need to set $\mathcal{F}_t = f_t^{-1}(\widetilde{\mathcal{F}} \times \mathbb{R})$ and $\omega_t = f_t^* e^w(\widetilde{\beta}_t + \alpha_t \wedge dw)$.

First split the interval ${\cal I}$ as

$$I = \bigcup_{1}^{N} \left[(i-1)/N, i/N \right]$$

and assume that f_t is defined on [0, (i-1)/N]. Observe that

$$\lim_{x \to \Sigma_{(i-1)/N}} \operatorname{Im}(df_{(i-1)/N}) \cap (T\widetilde{\mathcal{F}} \times \mathbb{R})$$

exists, is of dimension 2n and is close to $L_{(i-1)/N}$. Let $\overline{L}_{(i-1)/N} \subset T\widetilde{\mathcal{F}} \times \mathbb{R}$ be the 2*n*-dimensional distribution which equals $\operatorname{Im}(df_{(i-1)/N}) \cap T\widetilde{\mathcal{F}} \times \mathbb{R}$ on $M - \Sigma_{(i-1)/N}$ and on $\Sigma_{(i-1)/N}$ it is the limit. Set $\nu_{(i-1)/N} = \operatorname{Im}(df_{(i-1)/N})/\overline{L}_{(i-1)/N}$ and G_t^i , $t \in [(i-1)/N, i/N]$, as

$$G_t^i = L_t \oplus \nu_{(i-1)/N}.$$

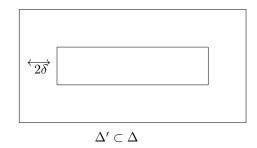
Observe that $\operatorname{Im}(df_{(i-1)/N})$ approximates $G_{(i-1)/N}^i$. So, if N is large then there exists a family of monomorphisms $F_t, t \in [(i-1)/N, i/N]$, such that $F_{(i-1)/N} = df_{(i-1)/N}$ and $\operatorname{Im}(F_t)$ approximates G_t^i . Hence F_t is tangent to $T\widetilde{F} \times \mathbb{R}$ only on a slightly perturbed $\Sigma_{(i-1)/N}$.

Choose a triangulation of M which is fine and $\Sigma_{(i-1)/N} \subset A$, where A is the (2n + q - 1)-skeleton of the triangulation. As the triangulation is fine all (2n+q)-simplices under the image of $f_{(i-1)/N}$ are contained in a neighbourhood diffeomorphic to I^{2n+q+2} and on it $\widetilde{\mathcal{F}} \times \mathbb{R}$ is given by the projection $\pi: I^{2n+q+2} \to I^q$ (projection on the first q factors).

Without loss of generality let us assume that F_t is defined for $t \in I$ instead of $t \in [(i-1)/N, i/N]$. Let

$$\overline{F}_t = F_{\sigma(t)}$$

where $\sigma: I \to I$ is a smooth map such that $\sigma = 0$ on $[0, \varepsilon] \cup [1 - \varepsilon, 1]$ and $\sigma = 1$ on a neighbourhood of 1/2. Observe that \overline{F}_t is holonomic for $t \in \partial I$.



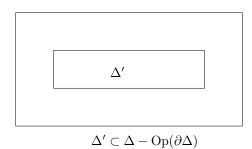
Use Theorem 2.1 for \overline{F}_t to get a family of immersions \overline{f}_t defined on $\operatorname{Op}(h_t^1(A))$ so that $d\overline{f}_t$ approximates \overline{F}_t on $\operatorname{Op}(h_t^1(A))$, where h_t^{τ} is δ small with $h_t^1 = \operatorname{id}$ for $t \in [0, \varepsilon] \cup [1 - \varepsilon, 1]$. The δ above will be used later so the reader needs to keep note of this fact. We approximate \overline{F}_t by F'_t so that $F'_t = d\overline{f}_t$ on $\operatorname{Op}(h_t^1(A))$.

It is enough to consider one simplex Δ . Let $\Delta' \subset \Delta$ be a 2 δ -smaller simplex so that $h_t^1(\Delta)$ does not intersect Δ' , δ is produced by applying Theorem 2.1 to \overline{F}_t above.

Define monomorphisms \widetilde{F}_t^{δ} depending on δ as follows. On $Op(\partial \Delta)$, set $\widetilde{F}_t^{\delta} =$ $d(\overline{f}_t \circ h_t^1)$. Now observe that there exists an isotopy of embeddings

$$\widetilde{g}_{\tau} \colon \Delta - \operatorname{Op}(\partial \Delta) \to \Delta - \operatorname{Op}(\partial \Delta)$$

such that $\widetilde{g}_0 = \text{id}$ and $\widetilde{g}_1(\Delta - \operatorname{Op}(\partial \Delta)) = \Delta'$. Any element of $(\Delta - \operatorname{Op}(\partial \Delta)) - \Delta'$ is of the form $\widetilde{g}_{\tau}(x), x \in \partial(\Delta - \operatorname{Op}(\partial \Delta))$, for some value of τ .



In Figure 2, Δ' is represented by the inner rectangle and the outer rectangle represents $\Delta - Op(\partial \Delta)$. The complement of Δ' in the above picture shrinks and eventually vanishes by \tilde{g}_{τ} as τ varies from 0 to 1.

Let $\gamma_t^x \colon I \to M$ be the path

$$\gamma_t^x(\tau) = \begin{cases} h_t^{1-2\tau}(x) & \text{for } \tau \in [0, 1/2], \\ \widetilde{g}_{2\tau-1}(x) & \text{for } \tau \in [1/2, 1]. \end{cases}$$

Set $(\widetilde{F}_t^{\delta})_{\widetilde{g}_{\tau}(x)} = (F_t')_{\gamma_t^x(\tau)}$. Observe that $\gamma_t^x(1) = \widetilde{g}_1(x) \in \partial \Delta'$. As \widetilde{F}_t^{δ} agrees with F'_t along $\partial \Delta'$, we can extend \widetilde{F}^{δ}_t on Δ by defining it to be F'_t on Δ' . Observe that

$$\Sigma_t^{\delta} = \left\{ \widetilde{\mathcal{F}}_t^{\delta} \text{ is tangent to } T\widetilde{\mathcal{F}} \times \mathbb{R} \right\} \subset \Delta - \Delta'.$$

The next Theorem 3.1 extends f_t from $t \in [0, (i-1)/N]$ to $t \in [0, i/N]$. To start the process, i.e. to extend f_0 to $f_t, t \in [0, 1/N]$, we take a fine triangulation of M so that the image under f_0 of all top dimensional simplices lies in a neighbourhood diffeomorphic to I^{2n+q+2} and on it $\widetilde{\mathcal{F}} \times \mathbb{R}$ is given by the projection on the first q factors $\pi: I^{2n+q+2} \to I^q$.

Theorem 3.1. Let $I_{\delta} = [\delta, 1 - \delta], I_{\varepsilon} = [\varepsilon, 1 - \varepsilon]$ with $\varepsilon = \varepsilon(\delta) < \delta$ and $(F_t^{\delta}, b_t^{\delta}): TI^{2n+q} \to TI^{2n+q+2}$ be a family of monomorphisms such that

- (a) $F_t^{\delta} = db_t^{\delta}$ on $I^{2n+q} I_{\varepsilon(\delta)}^{2n+q}$, $F_0^{\delta} = db_0^{\delta}$ on I^{2n+q} ,
- (b) F_t^δ h L on I_δ^{2n+q} for all t and Im(F_t^δ) ∩ TL is of dimension 2n and is close to L_t for all t on I_δ^{2n+q},
 (c) Σ_t^δ = {F_t^δ is tangent to TL} ⊂ (I^{2n+q} − I_δ^{2n+q}),

where \mathcal{L} is the foliation on I^{2n+q+2} induced by the projection $\pi: I^{2n+q+2} \to I^q$ (projection on the first q factors), $\widetilde{\mathcal{L}}$ is such that $\mathcal{L} = \widetilde{\mathcal{L}} \times I$ and $L_t \subset T\widetilde{\mathcal{L}}$ is a family of 2n-dimensional distributions. Then there is a δ'' and a family of immersions $f_t: I^{2n+q} \to I^{2n+q+2}$ such that

- (1) $f_t = b_t^{\delta''}$ on $I^{2n+q} I_{\varepsilon(\delta'')/2}^{2n+q}$
- (2) $(\pi \circ f_t)_{|I_{e''}^{2n+q}|}$ is a wrinkle map,
- (3) if $\Sigma_t(I^{2n+q} I^{2n+q}_{\delta''}) = \{x \in I^{2n+q} I^{2n+q}_{\delta''} : f_t(x) \text{ is tangent to } \mathcal{L}\},\$ then on $(I^{2n+q} I^{2n+q}_{\delta''}) \Sigma_t(I^{2n+q} I^{2n+q}_{\delta''}), f_t \oplus \mathcal{L}, \operatorname{Im}(df_t) \cap T\mathcal{L} \text{ is of}$ dimension 2n and is close to L_t .

Moreover, we can modify f_t near the wrinkles so that f_t becomes tangent to \mathcal{L} along the wrinkles.

REMARK 3.2. Observe that Theorem 3.1 above completes the induction process and hence the proof of Theorems 1.8 and 1.9.

PROOF. Let $\sigma: I \to I$ be a smooth map such that $\sigma = 0$ on $I - I_{\varepsilon(\delta)}$ and $\sigma = 1$ on a neighbourhood of 1/2. Let

$$F^{\delta} \colon T(I \times I^{2n+q}) \to T(I \times I^{2n+q+2})$$

be monomorphisms given by the matrix

$$F_{(t,x)}^{\delta} = \left(\begin{array}{cc} 1 & 0\\ \partial_t b_{\sigma(t)}^{\delta}(x) & F_{\sigma(t)}^{\delta}(x) \end{array}\right)$$

which covers $b^{\delta}(t,x) = (t, b^{\delta}_{\sigma(t)}(x))$. So $F^{\delta} = db^{\delta}$ on $I \times (I^{2n+q} - I^{2n+q}_{\varepsilon(\delta)})$. Let $\chi^{\delta} \colon I^{2n+q+1} \to I$ be a smooth map such that $\chi^{\delta} = 0$ on $I^{2n+q+1} - I^{2n+q+1}_{\varepsilon(\delta)}$ and $\chi^{\delta} = 1$ on $I^{2n+q+1}_{\delta'}, \, \delta' < \delta.$

Set $\Xi_{\tau}: I^{2n+q} \to I^{2n+q}$ for $\tau \in I$ as

$$\Xi_{\tau}(x_1, \dots, x_{2n+q}) = \left(x_1, \dots, x_{q-1}, (1-\chi^{\delta})x_q - \chi^{\delta}(\eta\tau - x_q), x_{q+1}, \dots, x_{2n+q}\right)$$

where $\eta > 0$ is so small that $x_q - \eta \chi^{\delta}$ remains non-negative.

Now set $(F_{\tau}^{\delta})_{(t,x)} = F_{(t,\Xi_{\tau}(x))}^{\delta}$ which covers $b_{\tau}^{\delta}(t,x) = b^{\delta}(t,\Xi_{\tau}(x))$. Observe that

- $\begin{array}{ll} (1) \ \ F^{\delta}_{\tau}=db^{\delta}=db^{\delta}_{\tau} \ \ \text{on} \ (I-I_{\varepsilon(\delta)})\times (I^{q-1}-I^{q-1}_{\varepsilon(\delta)})\times I\times (I^{2n}-I^{2n}_{\varepsilon(\delta)}).\\ (2) \ \ F^{\delta}_{0}=db^{\delta}=db^{\delta}_{\tau} \ \ \text{on} \ \ I\times I^{q-1}\times [0,\varepsilon(\delta)]\times I^{2n} \ \text{as} \ \chi^{\delta}=0 \ \text{on it.}\\ (3) \ \ F^{\delta}_{1}=db^{\delta}=db^{\delta}_{\tau} \ \ \text{on} \ \ I\times I^{q-1}\times [1-\varepsilon(\delta),1]\times I^{2n} \ \text{as} \ \chi^{\delta}=0 \ \text{on it.} \end{array}$

Moreover, observe that F_0^{δ} is holonomic and for $\tau \in I_{\delta}$

$$\Sigma_{\tau}^{\delta} = \{F_{\tau}^{\delta} \text{ not } \pitchfork \text{ to } T\mathcal{L} \times \mathbb{R}^2\} \subset I^{2n+q+1} - I_{\delta}^{2n+q+1}.$$

Using Theorem 2.1 we can approximate F_{τ}^{δ} on $Op(h_{\tau}^{1}(I \times I^{q-1} \times \{1/2\} \times I^{2n}))$ by df_{τ}^{δ} , where f_{τ}^{δ} is a family of immersions defined on $Op(h_{\tau}^{1}(I \times I^{q-1} \times \{1/2\} \times I^{2n}))$. Observe that Theorem 2.1 cannot be applied directly as F_1^{δ} is not holonomic but

this can be achieved by reparametrization of F_{τ}^{δ} as follows. First on $\tau \in [0, 1/2]$ define $F_{\tau}^{\delta} = F_{2\tau}^{\delta}$ and on [1/2, 1] define $F_{\tau}^{\delta} = F_{2-2\tau}^{\delta}$, so now we can apply Theorem 2.1, but after applying it we will have to consider the resulting immersion only for parameter values on [0, 1/2] and then reparametrize accordingly.

Now consider two smooth functions χ^i , i = 1, 2, defined as follows:

$$\begin{split} \chi^1 \colon [0, 1/2] \to [0, 1], \qquad \chi^1 = \begin{cases} 0 & \text{on Op}(0), \\ 1 & \text{on Op}(1/2). \end{cases} \\ \chi^2 \colon [1/2, 1] \to [0, 1], \qquad \chi^2 = \begin{cases} 0 & \text{on Op}(1/2), \\ 1 & \text{on Op}(1). \end{cases} \end{split}$$

Define g_{τ}^{δ} as

$$g_{\tau}^{\delta} = \begin{cases} b_0^{\delta} \circ g_{\chi^1(\tau)} & \text{for } \tau \in [0, 1/2], \\ f_{\chi^2(\tau)}^{\delta} \circ h_{\chi^2(\tau)}^1 \circ g_1 & \text{for } \tau \in [1/2, 1], \end{cases}$$

where $g_s \colon I \times I^{2n+q} \to I \times I^{2n+q+2}$, $s \in I$, is an isotopy of embeddings defined as $g_s = \text{id}$, for $s \in I$ on $(I - I_{\varepsilon(\delta)/2}) \times (I - I_{\varepsilon(\delta)/2})^{q-1} \times I \times (I - I_{\varepsilon(\delta)/2})^{2n}$. This is shown as a shaded region at the top and bottom in Figures 3–5.

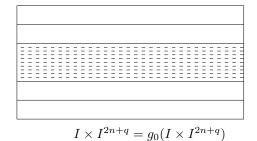


Figure 3

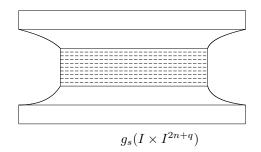


Figure 4

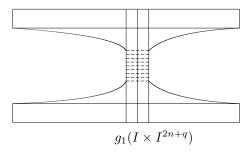


Figure 5

Let $\overline{g}_s \colon I \to I$ be such that $\overline{g}_0 = \text{id}$ and $\overline{g}_1(I) \subset \text{Op}(1/2)$. Then we set $g_s = \text{id}_{I_{\varepsilon(\delta)}} \times id_{I_{\varepsilon(\delta)}^{q-1}} \times \overline{g}_s \times \text{id}_{I_{\varepsilon(\delta)}^{2n}}$ on $I_{\varepsilon(\delta)} \times I_{\varepsilon(\delta)}^{q-1} \times I \times I_{\varepsilon(\delta)}^{2n}$. This is shown in the central shaded region in the above pictures. g_s can also be arranged so that $g_1(\Sigma_t^{\delta})$ does not intersect $I \times I^{q-1} \times \{1/2\} \times I^{2n}$.

In the non-shaded region in Figure 5, i.e. in the picture of $g_1(I^{2n+q+1})$,

$$f_0^{\delta} = b_0^{\delta}$$
 and $h_0^1 = \mathrm{id}$

and hence g_{τ}^{δ} is well defined. The next part of the proof is the same as [5], we include it here for completion. Although in the last part we need to do some work.

Now observe that for $\tau \in I_{\delta}$, $\{g_{\tau}^{\delta} \text{ not } \pitchfork \text{ to } \mathcal{L} \times \mathbb{R}\} \subset (I^{2n+q+1} - I_{\delta}^{2n+q+1}).$ For an integer l > 0 take a function $\phi_l : I \to I$ such that

$$\phi_l = \begin{cases} 1 & \text{on } I_{1/(8l)}, \\ 0 & \text{outside } I_{1/(16l)} \end{cases}$$

which is increasing on [1/(16l), 1/(8l)] and decreasing on [1-1/(8l), 1-1/(16l)]. Set

$$\gamma_l(t) = t + \phi_l(t)\sin(2\pi lt), \quad t \in I$$

Let J_i be the interval of length 9/(16l) centered at (2i-1)/2l. Observe that γ_l is non-singular outside $\bigcup J_i$ and $(\gamma_l)_{J_i}$ is a wrinkle. Also

$$\partial_t \gamma_l(t) \ge l, \quad t \in I - \bigcup J_i.$$

Let $\overline{\chi}^{\delta} \colon I^{2n+q+1} \to I$ be such that

$$\overline{\chi}^{\delta} = \begin{cases} 0 & \text{near } \partial(I^{2n+q+1}), \\ 1 & \text{on } I^{2n+q+1}_{\varepsilon(\delta)}. \end{cases}$$

Now we take $\delta = \delta(l) \ll 1/(16l)$. Set $\tilde{\gamma}_l(x) = (1 - \overline{\chi}^{\delta}(x))x_q + \overline{\chi}^{\delta}(x)\gamma_l(x_q)$. Let $\lambda \colon I \to I$, be such that $\lambda(0) = 0$, $\lambda(1) = 1$ and

- (1) $\lambda = (2i 1)/2l$ on J_i ,
- (2) $0 < \partial_t \lambda < 3$ on $I \bigcup J_i$.

Set $\overline{g}_{\tau}^{\delta} = g_{\lambda(\tau)}^{\delta}, \tau \in I$. Now consider

 $(t, x_1, \dots, x_{2n+q}) \stackrel{\rho_l}{\mapsto} \overline{g}_{x_q}^{\delta}(t, x_1, \dots, x_{q-1}, \widetilde{\gamma}_l(x), x_{q+1}, \dots, x_{2n+q}).$

Let θ be the function $\theta(t, x) = (t, x_1, \dots, x_{q-1}, \tilde{\gamma}_l(x), x_{q+1}, \dots, x_{2n+q})$. Then θ is a wrinkle map and as $\delta = \delta(l) \ll 1/(16l)$, the wrinkles of θ do not intersect $\{g_{\tau}^{\delta} not \pitchfork \text{ to } \mathcal{L} \times \mathbb{R}\}$, for $\tau \in I_{\delta}$. On $I \times I^{q-1} \times J_i \times I^{2n}$, ρ_l is of the form $\overline{g}_i^{\delta(l)} \circ \theta_i$, where $\theta_i = \theta_{|I \times I^{q-1} \times J_i \times I^{2n}}$. So, using Theorem 2.4, we can replace θ_i by another wrinkle map ψ_i such that $\pi \circ \overline{g}_i^{\delta(l)} \circ \psi_i$ turns out to be a fibered wrinkle map, fibered over the first factor I. But observe that $\overline{g}_i^{\delta(l)} \circ \psi_i$ is not an immersion. So we need to regularize it.

In the proof of Theorem 2.4 in [5] the coordinates have never been altered and kept fixed (see Appendix A). Moreover, in the definition of the wrinkle map w_s and in the definition of the special wrinkle ([5] which has been used in the proof of Theorem 2.4 in [5]) the y-coordinates are kept fixed, x-coordinates dropped and only the z-coordinate is changed and in the case of special wrinkles only the last coordinate is changed and the rest of coordinates are kept fixed. So from the proof of Theorem 2.4 in [5] we may assume without loss of generality that, for all $i, \pi \circ \overline{g}_i^{\delta(l)} \circ \psi_i$ has many wrinkles and near each wrinkle it is of the form

$$w_s(t, y, z, x) = \left(t, y, z^3 + 3(|(t, y)|^2 - 1)z - \sum_{1}^{s} x_i^2 + \sum_{s+1}^{2n} x_i^2\right)$$

and on this wrinkle the foliation is induced by π and hence $\overline{g}_i^{\delta(l)}\circ\psi_i$ is of the form

$$(t, y, z, x) \mapsto (t, y, z^{3} + 3(|(t, y)|^{2} - 1)z - \Sigma_{1}^{s} x_{i}^{2} + \Sigma_{s+1}^{2n} x_{i}^{2}, a_{1}(t, y, z, x), \dots, a_{2n+2}(t, y, z, x)).$$

Its derivative is given by the matrix

$$\begin{pmatrix} I_q & 0 & 0 \\ * & 3(z^2 + |(t,y)|^2 - 1) & (\pm 2x_i)_1^{2n} \\ * & (\partial_z a_j)_1^{2n+2} & (\partial_{x_i} a_j)_{i=1,j=1}^{i=2n,j=2n+2} \end{pmatrix}$$

In order to regularize, it is enough to C^1 -approximate a_j 's by a'_j 's. This can be done by C^1 -perturbing ψ_i only in those directions suitably. But we shall moreover want $\partial_z a'_{2n+1} \neq 0$ along $\{z^2 + |(t, y)|^2 - 1 = 0\}$, where a'_{2n+1} corresponds to the \mathbb{R} -factor of $\widetilde{M} = M \times \mathbb{R}$. Moreover, we also want $\partial_{y_1} a'_{2n+2} + 1 \neq 0$.

Now we need to convert non-transversality into tangency. Let us set

$$\varphi \colon I^{2n+q+2} \to [0,1]$$

be a smooth function such that $\varphi = 1$ outside a neighbourhood of D, where D is the disc which encloses $\{z^2 + |(t, y)|^2 - 1 = 0 \text{ and } x = 0\}$ and on $\{z^2 + |(t, y)|^2 - 1 = 0\}$, $\varphi = 0$ and $\partial_{y_1}\varphi = 0$. Moreover, $\varphi + y_1\partial_{y_1}\varphi$ is non-vanishing outside

 $\{z^2 + |(t, y)|^2 - 1 = 0\}$. We pictorially show the graph of φ (see Figure 6) which shows its existence. The graph touches the horizontal bottom line, i.e. the y_1 -axis represents the sphere $\partial D \cap \{y_1$ -axis} where $\partial D = \{z^2 + |(t, y)|^2 = 1 \text{ and } x = 0\}$.

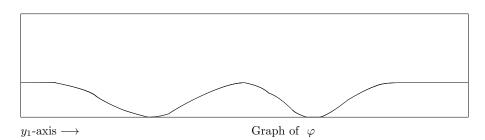


Figure 6

Now let $y = (y_1, \ldots, y_q)$ in the above and replace the resulting map by

$$(t, y, z, x) \mapsto \left(t, \varphi(t, y, z, x)y_1, y_2, \dots, y_q, z^3 + 3(|(t, y)|^2 - 1)z - \Sigma_1^s x_i^2 + \Sigma_{s+1}^{2n} x_i^2, a_1'(t, y, z, x), \dots, a_{2n+2}'(t, y, z, x) + y_1 - y_1\varphi(t, y, x, z) \right),$$

where the last component corresponds to the \mathbb{R} -component of $\widetilde{M} \times \mathbb{R}$, i.e. the *w*-variable. Its derivative is given by

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \partial_t(y_1\varphi) & \varphi + y_1\partial_{y_1}\varphi & * & * & * \\ 0 & 0 & I_{q-2} & 0 & 0 \\ * & * & * & 3(z^2 + |(t,y)|^2 - 1) & (\pm 2x_i)_1^{2n} \\ * & * & * & (\partial_z a'_j)_1^{2n+1} & (\partial_{x_i}a'_j)_{i=1,j=1}^{i=2n,j=2n+1} \\ * - \partial_t(y_1\varphi) & * + 1 - \partial_{y_1}(y_1\varphi) & * - \partial_{y_k}(y_1\varphi) & (\partial_z a'_{2n+2} - \partial_z(y_1\varphi)) & (\partial_{x_i}a'_{2n+2} - \partial_{x_i}(y_1\varphi))_{i=1}^{i=2n} \end{pmatrix} .$$

Now observe that the projections of the column vectors

$$(0, *, 0, 3(z^2 + |(t, y)|^2 - 1), (\partial_z a'_j)_1^{2n+1}, (\partial_z a'_{2n+2} - \partial_z (y_1 \varphi)))^T$$

and

$$(0, *, 0, (\pm 2x_i)_1^{2n}, (\partial_{x_i}a'_j)_{i=1,j=1}^{i=2n,j=2n+1}, (\partial_{x_i}a'_{2n+2} - \partial_{x_i}(y_1\varphi))_{i=1}^{i=2n})^T$$

onto $T\widetilde{\mathcal{F}}\times \mathbb{R}$ are

$$((\partial_z a'_j)^{2n+1}_1, (\partial_z a'_{2n+2} - \partial_z (y_1 \varphi)))^T$$

and

$$((\partial_{x_i}a'_j)_{i=1,j=1}^{i=2n,j=2n+1}, (\partial_{x_i}a'_{2n+2} - \partial_{x_i}(y_1\varphi))_{i=1}^{i=2n})^T$$

and their projections on $T\widetilde{\mathcal{F}}$ are

$$((\partial_z a'_j)_1^{2n+1})^T$$
 and $((\partial_{x_i} a'_j)_{i=1,j=1}^{i=2n,j=2n+1})^T$,

whose span was already close to $\mathbb{R} \times L_t$. Let us study the effect of the operation on the second column vector. Outside Op(D) it is $(0, 1, 0, \ldots, 0, \partial_{y_1}a'_{2n+2})$ and on ∂D it is

$$(0,\ldots,0,\partial_{y_1}a'_{2n+2}+1).$$

Recall that $\partial_{y_1} a'_{2n+2} + 1 \neq 0$. So we have rotated the vector in order to make the y_1 -component of the vector zero and the last component of it to be non-zero along ∂D .

Along $\{g^{\delta}_{\tau} \text{ not } \pitchfork \text{ to } \mathcal{L} \times \mathbb{R}\} \subset I^{2n+q+1} - I^{2n+q+1}_{\delta}, \forall \epsilon \in I_{\delta}, \text{ we can apply the same technique as above. We rotate the y- and z-components simultaneously to make them tangent to <math>\mathcal{L} \times \mathbb{R}$. This way we transform $\{g^{\delta}_{\tau} \text{ not } \pitchfork \text{ to } \mathcal{L} \times \mathbb{R}\}$ to $\{g^{\delta}_{\tau} \text{ is tangent to } \mathcal{L} \times \mathbb{R}\}.$

Note that if q > 2, then along a possible intersection of the three sets

$$\{\partial_z \text{ is tangent to } \mathcal{L} \times \mathbb{R}\} \cap \bigcap_{i=1}^2 \{\partial_{y_i} \text{ is tangent to } \mathcal{L} \times \mathbb{R}\}$$

we cannot transform $\{g_{\tau}^{\delta} \text{ not } \pitchfork \text{ to } \mathcal{L} \times \mathbb{R}\}$ to $\{g_{\tau}^{\delta} \text{ is tangent to } \mathcal{L} \times \mathbb{R}\}$, otherwise the rank will drop and it will no longer be regular.

Let $\overline{\rho}_l$ be the regularized map, then $\overline{\rho}_l$ is of the form $\overline{\rho}_l(t, x) = (t, x(t))$, where x(t) are functions of t. So the required family of immersions is given by

$$f_t(x) = x(\sigma^{-1}(t)), \quad t \in [0, 1/2]$$

with reparametrization. Clearly f_t has properties (1) and (2). Condition (3) follows from the fact that for large l, $d_I \rho_l$ approximates $d_I \bar{g}_{\tau}^{\delta}$ on

$$I imes I^{q-1} imes \left(I - \bigcup_i J_i
ight) imes I^{2n} \quad ext{and} \quad I^{2n+q+1} - I^{2n+q+1}_{\delta(l)}$$

whose proof is the same as in Theorem 2.3 A of [5] and we refer the readers to [5]. As $\delta(l)$ depends on l and $\varepsilon(\delta)$ depends on δ , we are done.

REMARK 3.3. In Theorem 1.9 if we drop the homotopy part then it seems to be possible to show the existence of the Poisson structure π_1 even in the case where the codimension-q is bigger than 2.

Appendix A

Here we define the function ψ mentioned in the conclusion of Theorem 2.4. The proof that $\hat{\beta}$ (below) is a wrinkle map is done in the proof of Theorem 2.2 A in [5].

Let U, V be open domains in \mathbb{R}^n and $\hat{\alpha} \colon U \to V$ be a special wrinkle. Let the sphere $\Sigma \subset U$ be the singular locus of $\hat{\alpha}$ and D be the disk bounded by Σ .

Consider a smooth even function $a_M \colon \mathbb{R} \to \mathbb{R}_+$ such that $a_M(x) = M^2 x^2$ on |x| < (1/3M) and on |x| > (1/2), $a_M(x) = |x|$. Moreover, $\partial_x a_M(x) > 1/2$ for

 $x \ge 1/3M$. Let $b_{N,M}$ be an odd, 2/N-periodic smooth function which is equal to $a_M(2Nx+1) - 1$ on [-1/N, 0]. Define

$$\beta(x_1, \dots, x_n) = \alpha(x_1, \dots, x_n) + \delta\rho(x_1, \dots, x_n)(b(x_1 - 1/2N) + \dots + b(x_{n-q} - 1/2N))$$

where $\delta > 0$ is a small real number and ρ is a cut-off function on U which equals 1 on a neighbourhood of D and 0 outside a compact subset of U. Then, for δ sufficiently small and N and M sufficiently large, $\psi = \hat{\beta}$ is the required function.

Acknowledgements. We thank the reviewer for his/her comments.

References

- M. BERTELSON, A h-principle for open relations invariant under foliated isotopies, J. Symplectic Geom. 1 (2002), 369–425.
- [2] M. BERTELSON, Foliations associated to regular Poisson structures, Commun. Contemp. Math. 3 (2001), no. 3, 441–456.
- [3] M.S. BORMAN, Y. ELIASHBERG AND E. MURPHY, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), 215–281.
- [4] J.P. DUFOUR AND N.T. ZUNG, Poisson Structures and Their Normal Forms, Progress in Mathematics, Vol. 242, Birkhäuser, 2005.
- Y. ELIASHBERG AND N.M. MISHACHEV, Wrinkling of smooth mappings and its applications I, Invent. Math. 130 (1997), 349–369.
- [6] Y. ELIASHBERG AND N.M. MISHACHEV, Introduction to the h-Principle, Graduate Studies in Mathematics, Vol. 48, American Mathematical Society, Providence, 2002.
- [7] R.L. FERNANDES AND P. FREJLICH, An h-principle for symplectic foliations, Int. Math. Res. Not. IMRN (2012), no. 7, 1505–1518.
- [8] M. GROMOV, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Math. 33 (1069), 707–734 (in Russian).
- [9] R. THOM, Les singularités des application différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/1956), 43–87.
- [10] I. VAISMAN, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, Vol. 118, Birkhäuser, 1994.

Manuscript received March 5, 2017 accepted October 17, 2017

SAUVIK MUKHERJEE Visiting Faculty Department of Mathematics Presidency University Kolkata, 86/1, College Street Kolkata, West Bengal 700073, INDIA *E-mail address*: mukherjeesauvik@yahoo.com

TMNA : Volume 51 – 2018 – N^o 1