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DYNAMICS ON SENSITIVE

AND EQUICONTINUOUS FUNCTIONS

Jie Li — Tao Yu — Tiaoying Zeng

Abstract. The notions of sensitive and equicontinuous functions under

semigroup action are introduced and intensively studied. We show that
a transitive system is sensitive if and only if it has a sensitive pair if and

only if it has a sensitive function. While there exists a minimal non-weakly

mixing system such that every non-constant continuous function is sensi-
tive, and a topological dynamical system is weakly mixing if and only if

it is sensitive consistently with respect to (at least) any two non-constant

continuous functions. We also get a dichotomy result for minimal systems
— every continuous function is either sensitive or equicontinuous.

1. Introduction

By a topological dynamical system (t.d.s. for short) we mean a pair (X,T )

where X is a compact metric space with metric d and T : X → X is a continuous

map. The collection of all continuous real-valued functions on a given t.d.s.

(X,T ) is denoted by C(X,R).

In [7], Glasner and Weiss first discovered the link between `1-structure via

coordinate density for elements of C(X,R) and the topological entropy of (X,T ).

Later Kerr and Li [8], [9] completely characterized this connection. In particular,
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they showed that for a given t.d.s. (X,T ) with T a homeomorphism and for any

f ∈ C(X,R), f has an `1-isomorphism set of positive density if and only if there

exists an entropy pair (x, y) ∈ X ×X with f(x) 6= f(y).

The notion of sensitivity was first used by Ruelle [13]. According to Auslan-

der and Yorke [4], a t.d.s. (X,T ) is called sensitive if there exists δ > 0 such

that for every x ∈ X and every neighbourhood Ux of x, there exist y ∈ Ux and

n ∈ N with d(Tnx, Tny) > δ. Using ideas from the local entropy theory, Ye and

Zhang [17] introduced the notion of sensitive pair and showed that a transitive

t.d.s. is sensitive if and only if there exists a sensitive pair. They also proved

that under the transitivity assumption each entropy pair is a sensitive pair. Now

we naturally ask, given f ∈ C(X,R), what happens if there exists a sensitive

pair (x, y) ∈ X ×X with f(x) 6= f(y)?

In [6], Glasner and Megrelishvili studied the opposite side of sensitivity and

its functional version, particularly in which the characteristics of the corre-

sponding Ellis semigroup are mostly involved. Inspired by this we naturally

investigate the dynamics of a sensitive t.d.s. associated to a real continuous

function. To be precise, for an f ∈ C(X,R) we say that a t.d.s. (X,T ) is f -

sensitive (or equivalently f is a sensitive function for (X,T )) if there is δ > 0

such that for every non-empty open subset U ⊂ X there are x, y ∈ U and

n ∈ Z+ such that df (Tnx, Tny) > δ, where df is a pseudometric on X given by

df (x, y) = |f(x) − f(y)| for all x, y ∈ X. Note that recently Achigar, Artigue

and Monteverde in [1] discussed the observability of expansive maps (which are

apparently sensitive ones) associated to continuous real functions in the same

manner, where and in references therein embedding properties are mainly in-

volved.

We point out that the notion of sensitive function is obviously weaker than

the classical sensitivity, see Examples 4.4 (1) and 4.5 for explicit illustrations.

But under transitive assumption things may differ (Proposition 4.2). Particularly

we show that for any f ∈ C(X,R), given the transitivity property, (X,T ) is f -

sensitive if and only if there exists a sensitive pair (x1, x2) such that f(x1) 6=
f(x2) (Theorem 4.1), which answers the question raised above.

Now we propose another natural question: given a transitive t.d.s. (X,T ),

what happens if for any non-constant function f ∈ C(X,R) there is a sensitive

pair (x1, x2) such that f separates them? This is equivalent to ask when a tran-

sitive t.d.s. (X,T ) is f -sensitive for all non-constant functions f ∈ C(X,R)?

Indeed we can also find a similar motivation for this question in the papers of

Kerr and Li [8], [9] regarding a characterization of completely positive entropy

and in the paper of Ye and Zhang [17] concerning connection between entropy

(1) In this paper all results are stated in a general semigroup context, which contains the

classical Z+ action (generated by a single continuous map) as a particular case.
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and sensitive pairs. Another motivation comes from the work of Garćıa-Ramos

and Marcus [5]. In particular, they proved that an ergodic measurable preserv-

ing transformation (X,µ, T ) is measurably weakly mixing if and only if it is

µ-f -mean sensitive for all non-constant functions f ∈ L2(X,µ). Note that mea-

surably weak mixing captures the idea of asymptotic independence in a mean

sense, and it is clear that if additionally (X,µ, T ) can be realized by a t.d.s. (X,T )

with an invariant probability Borel measure µ on X then the dynamics on the

support of µ is (topologically) weakly mixing (i.e. (supp(X)× supp(X), T × T )

is transitive). These enlighten us to further conjecture that (X,T ) is weakly

mixing if and only if it is f -sensitive for all non-constant functions f ∈ C(X,R).

Unfortunately we show that this is not an equivalent characterization in

general, even if (X,T ) is strengthened to a P -system (i.e. transitive with dense

periodic points), see Examples 4.7 and 4.9. But for some special cases (by adding

extra conditions such as minimality (Proposition 4.10), extreme f -sensitivity

(Proposition 4.11) and multi-sensitive functions (Theorem 5.4)) the conjecture

is eventually true. To prove Theorem 5.4, we introduce the notion of multi-

variants of sensitive functions. In Section 5 we provide suitable examples to

distinguish all different levels of the multi-forms, see Examples 5.5 and 5.6 for

details.

In the remaining part of this paper we also consider the opposite side of sen-

sitive functions. Unlike the concerns of Glasner and Megrelishvili [6], we mainly

focus on the dynamics of equicontinuous and almost equicontinuous functions.

Some classical results in this line, such as dichotomy theorem (Theorem 6.5), are

naturally generalized to this function-dependent case.

There is a rather abundant research on the sensitivity for Z+-actions, see

Section 3 in a recent survey [11] on this topic. To make our study work in a more

general frame, we would like to proceed with the main part under the semigroup

actions. By a general topological dynamical system (also t.d.s. for short) we

mean a triple (X,S, π) where X is a compact metric space with metric d, S is

a discrete topological semigroup with an identity and π : S×X → X, (s, x) 7→ sx

is a continuous action on X with the property that (s1s2)x = s1(s2x) for every

s1, s2 ∈ S and x ∈ X. For simplicity we use the pair (X,S) to denote the t.d.s.

and it is clear that each element s in S can be viewed as a continuous map from

X to itself. When S = {Tn : n ∈ Z+} and T : X → X is a continuous map,

(X,S) is the same as the classical t.d.s. (X,T ). Since a general semigroup may

be uncountable and the order relation may vanish, hence traditional methods

are not always workable. The recent work of Wang, Chen and Fu [15] and the

work of Kontorovich and Megrelishvili [10] not only serve as our motivation of

considering semigroup action but also provide us with some useful notions and

techniques that we will need.
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This paper is organized as follows. In Section 2 some basic definitions and

results under semigroup actions are described. In Section 3, we introduce the

concept of sensitive tuples for semigroup actions and show that a transitive sys-

tem is n-sensitive if and only if it has an n-sensitive tuple (Proposition 3.1).

Section 4 is devoted to studying sensitive functions. We show that for tran-

sitive systems a function is sensitive if and only if it separates sensitive pairs

(Theorem 4.1). In Section 5, we study multi-sensitive functions and show that

a topological dynamical system is weakly mixing if and only if it is sensitive

consistently with respect to at least any two non-constant continuous functions

(Theorem 5.4). The final Section 6 takes care of the corresponding equicontinu-

ous functions and we obtain dichotomy results between sensitive functions and

equicontinuous functions (Theorem 6.5).

2. Preliminaries

Throughout this paper, the sets of integers, nonnegative integers, natural

numbers and real numbers are denoted by Z, Z+, N and R, respectively.

2.1. Topological dynamics. Let (X,S) be a t.d.s. as explained in the

introduction. Fix n ∈ N, we write (Xn, S) as the n-fold product t.d.s. (X× . . .×
X,S) defined by s(x1, . . . , xn) = (sx1, . . . , sxn) for all (x1, . . . , xn) ∈ Xn and

s ∈ S. Set ∆n(X) = {(x, . . . , x) ∈ Xn : x ∈ X}. For x ∈ X, non-empty subsets

U, V ⊂ X and s ∈ S we denote the orbit of x by Sx = {sx : s ∈ S} and define

s−1U = {x ∈ X : sx ∈ U}, sU = {sx : x ∈ U},

N(U, V ) = {s ∈ S : U ∩ s−1V 6= ∅}.

We say that (X,S) is point-transitive if Sx = X for some x ∈ X and at this time

the point x is referred to be a transitive point. Denote by TranS the collection

of all transitive points in X. If every point of X is transitive, we call (X,S)

a minimal t.d.s. and meanwhile each point in it is called a minimal point. We

say that a point x ∈ X is recurrent if for every neighbourhood U of x there exist

infinitely many s ∈ S such that sx ∈ U and periodic if x is recurrent and Sx is

finite.

A t.d.s. (X,S) is said to be (topologically) transitive if for any non-empty open

subsets U, V in X we have N(U, V ) 6= ∅. It is (topologically) weakly mixing if the

product t.d.s. (X × X,S) is transitive. By standard discussion one can easily

see that if (X,S) is transitive then it is point-transitive. If further assumiing

that S is a commutative semigroup we have the following observation. The easy

verification is omitted.
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Lemma 2.1. Let (X,S) be a transitive t.d.s. with S being a commutative

semigroup. Then, for each n ∈ N, the set

Wn = {(s1x, . . . , snx) : x ∈ TranS , s1, . . . , sn ∈ S}

is dense in Xn and each element of it is a recurrent point.

We will need the following characterization of weak mixing [12].

Lemma 2.2. Let (X,S) be a t.d.s. and S be a commutative semigroup. Then

the following are equivalent:

(a) (X,S) is weakly mixing.

(b) For all non-empty open subsets U, V ⊂ X, N(U,U) ∩N(U, V ) 6= ∅.
(c) For all non-empty open subsets Ui, Vi ⊂ X (i = 1, 2), there exist non-

empty open subsets U3, V3 ⊂ X such that

N(U1, V1) ∩N(U2, V2) ⊃ N(U3, V3) 6= ∅.

(d) (Xn, S) is weakly mixing for any n ∈ N.

We say that a t.d.s. (X,S) is a/an

• P-system if it is transitive and the set of periodic points is dense;

• M -system if it is transitive and the set of minimal points is dense;

• E-system if it is transitive and there exists an S-invariant probability

measure with full support.

Let (X,S) and (Y, S) be two t.d.s.s and a map π : X → Y be given. We say

that π is a factor map if π is continuous onto and satisfies that π ◦ S = S ◦ π.

2.2. Symbolic dynamics. In this paper many examples relying on the

symbolic dynamics are illustrated. To make it easier for readers we collect the

needed notions in this subsection.

Let (Σ+
2 , σ) be the full shift, where Σ+

2 = {0, 1}Z+ is equipped with Cantor

product topology and a compatible metric on it is defined by d(x, y) = 0 if x = y

otherwise d(x, y) = 1/(i+ 1) with i = min {j ∈ Z+ : xj 6= yj}; the continuous

shift map σ : Σ+
2 → Σ+

2 is given by σ(x)n = xn+1 for n ∈ Z+. It is clear that Σ+
2

is compact. In common use we refer to its every compact σ-invariant subspace

X together with the shift map σ as a subshift.

Given n ∈ N, we call w ∈ {0, 1}n a word of length n and write |w| = n. For

any two words u = u0 . . . un and v = v0 . . . vm, we define the concatenation of

u, v by uv = u0 . . . unv0 . . . vm. In the same manner we define by um for some

m ∈ N the concatenation of m copies of u, and by u∞ the infinite concatenation

of u. Let X be a subshift of Σ+
2 and x = x0x1 . . . ∈ X, for any i, j ∈ Z+, we

denote x[i,i+j] = xixi+1 . . . xi+j . A word w = w0w1 . . . wn is said to appear in x

at position i if x[i,i+n] = w. By Ln(X) we mean the set of all words of length

n in X. For any word u ∈ Ln(X) its cylinder set is defined by [u] = {x ∈ X :
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x0 . . . xn−1 = u}. Note that all cylinder sets

{
[u]u ∈

⋃
n∈N
Ln(X)

}
form a basis

of the topology of X.

3. Sensitive tuples for semigroup actions

A t.d.s. (X,S) is said to be sensitive if there exists δ > 0 such that for each

x ∈ X and each ε > 0 there are y ∈ X with d(x, y) < ε and s ∈ S such that

d(sx, sy) > δ. Given n ≥ 2, we call a t.d.s. (X,S) is n-sensitive if there exists

δ > 0 such that for any non-empty open subset U of X there exist x1, . . . , xn ∈ U
and s ∈ S such that d(sxi, sxj) > δ for 1 ≤ i < j ≤ n. A tuple (x1, . . . , xn) in

Xn is referred to be sensitive if (x1, . . . , xn) is not on the diagonal ∆n(X) and

for each ε > 0, each non-empty open subset U of X there exist y1, y2, . . . , yn ∈ U
and s ∈ S such that d(xi, syi) < ε for i = 1, 2, . . . , n. Denote by Sn(X,S) the

collection of all n-sensitive tuples. We say (x1, . . . , xn) ∈ Sn(X,S) is essential if

xi 6= xj for each 1 ≤ i < j ≤ n and denote all such tuples by Sen(X,S) at this

time.

Note that for the case of S = Z+ the notion of n-sensitivity property was

first generalized by Xiong in [16] and the case n = 2 is the classical sensitivity

property. Later using ideas from the local entropy theory Ye and Zhang [17]

further introduced the notion of sensitive tuples. Particularly they showed that

a transitive t.d.s. (X,T ) is n-sensitive if and only if Sen(X,T ) 6= ∅. Next we aim

to extend this result to semigroup actions.

To do so, we need to put extra restriction on the semigroup S, that is S

is assumed to be a C-semigroup. Following [10], a semigroup S is said to be

a C-semigroup if for every s0 ∈ S, the closure of S \ Ss0 is compact. Since we

have assumed that the topology of S is discrete, then it is a C-semigroup if and

only if the subset S \ Ss0 is finite for every s0 ∈ S (otherwise, there is a limit

element a in S \ Ss0 and then S \ (Ss0 ∪ {a}) is not closed, contradicting the

fact that each subset of a discrete space is both open and closed). It is clear that

every topological group is a C-semigroup.

Proposition 3.1. Let (X,S) be a transitive t.d.s. with S being a C-semi-

group and n ∈ N. Then (X,S) is n-sensitive if and only if Sen(X,S) 6= ∅.

Proof. Assume (X,S) is n-sensitive and x ∈ TranS . Let Um be a sequence

of open neighbourhoods of x with diam(Um) < 1/m for m ∈ N. Then there

is δ > 0 such that for each m ∈ N, there exist xm1 , . . . , x
m
n ∈ Um and sm ∈ S

satisfying d(smx
m
i , smx

m
j ) > δ for 1 ≤ i < j ≤ n. Without loss of generality we

assume that smx
m
i → xi (m → ∞) for i = 1, . . . , n. It is easy to see that the

limit points x1, . . . , xn are pairwise distinct. Also, we can check the cardinality

of the set {sm : m ∈ N} is infinite.
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Now we show that the tuple (x1, . . . , xn) is sensitive. Let ε > 0 and U ⊂ X be

any non-empty open subset of X. By transitivity there is t ∈ S such that tx ∈ U .

Since t as a map from X to X is continuous, there is m ∈ N such that tUm ⊂ U .

For this t, by the definition of a C-semigroup we have that S \ St is finite. This

means that we can find suitable m ∈ N such that there are xm1 , . . . , x
m
n ∈ Um

and sm ∈ St satisfying d(xi, smx
m
i ) < ε for all 1 ≤ i ≤ n. Let s′m ∈ S be such

that sm = s′mt. This implies that for any ε > 0, there are txmi ∈ U and s′m ∈ S
such that d(xi, s

′
m(txmi )) < ε, i = 1, . . . , n. So (x1, . . . , xn) ∈ Sen(X,S), proving

the necessity.

For the sufficiency side, assume there is an n-tuple (x1, . . . , xn) ∈ Sen(X,S).

Put δ =
(

min
1≤i<j≤n

d(xi, xj)
)
/2. Let ε be such that 0 < ε < δ/2 and U be a non-

empty open subset of X, then there exist y1, . . . , yn ∈ U and s ∈ S such that

d(xi, syi) < ε, i = 1, . . . , n. This implies that d(syi, syj) > δ, 1 ≤ i 6= j ≤ n.

That is, (X,S) is n-sensitive. �

For n ≥ 2, an n-tuple (x1, . . . , xn) ∈ (Xn, S) is called regionally proxi-

mal if for every ε > 0 there exist y1, y2, . . . , yn ∈ X and s ∈ S such that

sup
1≤i≤n

d(xi, yi) < ε and sup
1≤i,j≤n

d(syi, syj) < ε. Let Qn(X,S) denote the collec-

tion of all n-regionally proximal tuples. Using the same techniques as in [14]

and [17] (where S = Z+ action considered), we have the following characteriza-

tion.

Theorem 3.2. Let (X,S) be a t.d.s. and S a commutative C-semigroup.

(a) If (X,S) is transitive, then Sn(X,S) ⊂ Qn(X,S) for every n ≥ 2.

(b) If (X,S) is minimal then Sn(X,S) = Qn(X,S)\∆n(X) for every n ≥ 2.

Proof. (a) Let (x1, . . . , xn) ∈ Sn(X,S) and Ui be the neighbourhood of xi,

respectively. Then, for any non-empty open subset U ⊂ X, there is s0 ∈ S such

that Vi := U ∩ s−10 Ui 6= ∅. Observe that V1 × . . . × Vn ⊂ Xn is open, hence

by Lemma 2.1 there is a recurrent point (y1, . . . , yn) ∈ U × . . . × U such that

s0yi ∈ Ui for all 1 ≤ i ≤ n. Since S is a C-semigroup, from the definition of

recurrence there is s1 ∈ Ss0 such that s1yi ∈ U for each 1 ≤ i ≤ n. Let s2 be

such that s1 = s2s0 and then s2(s0yi) ∈ U for all 1 ≤ i ≤ n. This implies that

(x1, . . . , xn) ∈ Qn(X,S).

(b) Now assume that (X,S) is minimal and (x1, . . . , xn) ∈ Qn(X,S)\∆n(X).

For any m ∈ N, there are recurrent points (ym1 , . . . , y
m
n ) ∈ B(x1, 1/m) × . . . ×

B(xn, 1/m) (by Lemma 2.1) and sm ∈ S such that sup
1≤i,j≤n

d(smy
m
i , smy

m
j ) <

1/m. Without loss of generality let lim
m→∞

smy
m
i = x for any 1 ≤ i ≤ n and

some x ∈ X. Since X is minimal, x is a transitive point. Then, for any non-

empty open subset U of X, there is t ∈ S such that tx ∈ U . And so for large

enough m we have tsmyi ∈ U for all 1 ≤ i ≤ n. Since S is a C-semigroup,
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there is s′ ∈ S such that s′(tsmyi) ∈ B(xi, 1/m), i = 1, . . . , n. This shows that

(x1, . . . , xn) ∈ Sn(X,S). �

The following result was first observed in [17]. With the help of Lemma 2.2

we can strengthen it to the semigroup action.

Proposition 3.3. Let (X,S) be a t.d.s. with S being a commutative semi-

group. Then it is weakly mixing if and only if Sn(X,S) = Xn \∆n(X).

Proof. We only give the details for n = 2. The general case is similar.

Assume that (X,S) is weakly mixing. It is clear that S2(X,S) ⊂ X2 \∆2(X).

Let (x1, x2) ∈ X2 \∆2(X) and ε > 0. For any non-empty open subset U ⊂ X,

there is s ∈ S such that U ∩ s−1B(x1, ε) 6= ∅ and U ∩ s−1B(x2, ε) 6= ∅. This

implies that (x1, x2) ∈ S2(X,S) and hence S2(X,S) = X2 \∆2(X).

Now assume S2(X,S) = X2 \ ∆2(X). If there are two non-empty open

subsets U, V ⊂ X such that N(U,U)∩N(U, V ) = ∅, then U × V ∩ S2(X,S) = ∅
which is impossible. Hence by Lemma 2.2 (X,S) is weakly mixing. �

4. Sensitive functions for semigroup actions

Let (X,S) be a t.d.s. and f ∈ C(X,R). We say that (X,S) is f -sensitive (or

equivalently f is a sensitive function for (X,S)) if there is δ > 0 such that for

every non-empty open subset U ⊂ X there are x, y ∈ U and s ∈ S such that

df (sx, sy) = |f(sx)− f(sy)| > δ.

Such constant δ is called an f -sensitive constant. It is clear that a constant

function is not sensitive.

First we have the following characterization of sensitive functions.

Theorem 4.1. Let (X,S) be a transitive t.d.s. with S being a C-semigroup

and f ∈ C(X,R). Then f is sensitive for (X,S) if and only if there exists

a sensitive pair (x1, x2) such that f(x1) 6= f(x2).

Proof. Assume that there exists a sensitive pair (x1, x2) such that f(x1) 6=
f(x2). Put δ = |f(x1) − f(x2)|/2 and let ε ∈ (0, 1) be such that 0 < ε < δ/2.

Since f ∈ C(X,R) there is δ′ > 0 such that if d(x, y) < δ′ then |f(x)−f(y)| < ε.

Let U be a non-empty open subset of X. Since (x1, x2) is a sensitive pair, there

are y1, y2 ∈ U and s ∈ S such that sy1 ∈ B(x1, δ
′) and sy2 ∈ B(x2, δ

′). This

implies that

|f(sy1)− f(sy2)| ≥ |f(x1)− f(x2)| − |f(x1)− f(sy1)| − |f(x2)− f(sy2)| > δ,

which ends the proof of sufficiency.

For the necessity side, we assume that f ∈ C(X,R) is a sensitive function

with an f -sensitivity constant δ > 0. Let U be a non-empty open subset of X.

Then there are x, y ∈ U and s ∈ S with |f(sx) − f(sy)| > δ. For this δ, since
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f ∈ C(X,R), there is δ′ > 0 such that for any z1, z2 ∈ X if |f(z1) − f(z2)| > δ

then d(z1, z2) > δ′. This implies that d(sx, sy) > δ′. Now let x ∈ TranS and

Um (m ∈ N) be a sequence of open neighbourhoods of x with diam(Um) <

1/m. For each m ∈ N, there then exist xm1 , x
m
2 ∈ Um and sm ∈ S such that

|f(smx
m
1 )− f(smx

m
2 )| > δ and d(smx

m
1 , smx

m
2 ) > δ′. Without loss of generality

let smx
m
1 → x1 and smx

m
2 → x2 when n→∞. Then following arguments similar

to those in Proposition 3.1, we have that (x1, x2) is a sensitive pair. Meanwhile

it is also clear that f(x1) 6= f(x2). This means that the necessity holds. �

Proposition 4.2. Let (X,S) be a transitive t.d.s. with S being a C-semi-

group. Then (X,S) is sensitive if and only if there exists a sensitive function.

Proof. Assume that f ∈ C(X,R) is a sensitive function. Let U be a non-

empty open subset of X. Then there is δ > 0 such that there are x, y ∈ U and

s ∈ S with |f(sx) − f(sy)| > δ. For this δ, since f ∈ C(X,R), there is δ′ > 0

such that for any z1, z2 ∈ X if |f(z1) − f(z2)| > δ then d(z1, z2) > δ′. This

implies that d(sx, sy) > δ′, and hence (X,S) is sensitive.

Now assume that (X,S) is sensitive. By Proposition 3.1, there exists a sen-

sitive pair (x1, x2) ∈ X2. Put f(x) = d(x, x1). Then f(x1) 6= f(x2). By

Theorem 4.1, we have that f is a sensitive function. �

Remark 4.3. Note that in the proofs of sufficiency of Theorem 4.1 and

Proposition 4.2 we do not need the transitivity condition and the restriction of

C-semigroup action.

In the following we will provide several examples to show that there are

sensitive t.d.s. such that it is not f -sensitive for some non-constant f ∈ C(X,R).

Example 4.4. There is a transitive system (X,S) such that it is sensitive

but there exists non-constant f ∈ C(X,R) such that it is not f -sensitive.

Proof. Let (Y, S) be a weakly mixing system (e.g., for full shift with S =

Z+). Set X = Y × {0, 1} with the sup metric. Define the action by s(x, a) =

(sx, ā), where s ∈ S and ā = 1− a with a ∈ {0, 1}. Then it is clear that (X,S)

is transitive and sensitive. Choose a continuous function f such that f(x, a) = a

for all x ∈ X and a ∈ {0, 1}. By Proposition 3.3 it is not hard to see that

S2(X,S) = {((x, a), (y, a)) : x 6= y ∈ X, a ∈ {0, 1}}. Then using Theorem 4.1

we have that (X,S) is not f -sensitive. �

Example 4.5. There is a minimal system (X,S) such that it is sensitive but

there exists non-constant f ∈ C(X,R) such that it is not f -sensitive.

Proof. Let the unit circle be T1 := R/Z, α ∈ (0, 1) ∈ R \Q. Let Tα : T1 →
T1 be Tα(x) = x+α (mod 1). It is easy to see that (T1, Tα) is a minimal equicon-

tinuous system. Fix any point x0 ∈ T1, consider Orb(x0) := {Tnα (x0), n ∈ Z}
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and stretch Tnα (x0) into an arc In (In = [an, bn] is an arc going from ai to bi
anticlockwise) such that

(1) l(Im+1) = l(Im)/2 and l(I−m) = l(Im) for any m ∈ N ∪ {0},
(2)

∑
n∈Z

l(In)=1, l(I) is the length of I.

Using the method we can get a larger circle Y . The metric d0 on Y is

defined as follows d0(x, y) = min {l([x, y]), l([y, x])}, x, y ∈ Y . We can find

a homeomorphic monotonic map h : Y → Y such that

h(ak) = ak+1, h(bk) = bk+1, h(Ik) = Ik+1

and

h(x) = Tα(x), for all x ∈ Y \
⋃
k∈Z

Ik.

Let X = Y \
+∞⋃
i=−∞

(ai, bi) and define T : X → X to be the restriction of h on X.

We call the system (X,T ) the Denjoy system. If ϕ : X → T1 satisfies ϕ(ai) =

ϕ(bi) = T iα(x0) and ϕ(x) = x for x ∈ X \ {ai, bi}+∞i=−∞, we can see that ϕ is an

almost 1–1 extension. It is not hard to see that S2(X,T ) = {(an, bn) : n ∈ Z} and

S2(X,T ) = S2(X,T )∪∆2(X). Let f ∈ C(T1,R) be a non-constant function and

define f̃(x) = f(ϕ(x)), x ∈ X. It is clear that f̃ ∈ C(X,R) and f̃ is non-constant

too. By Theorem 4.1 we know that X is not f̃ -sensitive. �

Next, as mentioned in the introduction, we address the question whether

(X,S) is weakly mixing if and only if it is f -sensitive for all non-constant f ∈
C(X,R). From Proposition 3.3 and Theorem 4.1 we know that if (X,S) is

weakly mixing, then for every non-constant f , it is f -sensitive. For the converse

side, we will show by particular examples that it is false. To do so, we first

provide a criterion for a given t.d.s. (X,S) to be f -sensitive for all non-constant

f ∈ C(X,R).

Proposition 4.6. Let (X,S) be a t.d.s. If there is a non-empty subset Y ⊂ X
such that Y × Y \ ∆2(X) ⊂ S2(X,S) and, for any x ∈ X \ Y , there is y ∈ Y
such that (x, y) ∈ S2(X,S), then (X,S) is f -sensitive for every non-constant

f ∈ C(X,R).

Proof. Let f ∈ C(X,R) be a non-constant function. There exist x1 6= x2 ∈
X such that f(x1) 6= f(x2). If (x1, x2) ∈ S2(X,S) then using Theorem 4.1 and

Remark 4.3, (X,S) is f -sensitive and this case is complete. If (x1, x2) /∈ S2(X,S),

by assumption there are y1, y2 ∈ Y such that (x1, y1) ∈ S2(X,S) and (x2, y2) ∈
S2(X,S). If y1 6= y2, by assumption (y1, y2) ∈ S2(X,S). Then it is not hard to

see that there exist at least two distinct values in the set {f(x1), f(y1), f(y2)} or

the set {f(x2), f(y1), f(y2)}. By simple discussion and combining Theorem 4.1

and Remark 4.3 again we can show (X,S) is f -sensitive. If y1 = y2 then either
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f(x1) 6= f(y1) or f(x2) 6= f(y1), and in either case we can get by previous

arguments that (X,S) is f -sensitive. �

Note that the weakly mixing t.d.s. satisfies all the conditions of Proposi-

tion 4.6. Next we present an alternative example for which the set of sensitive

pairs is extremely meager.

Example 4.7. There is a transitive system (X,T ) which is neither minimal

nor weakly mixing, such that (X,T ) is f -sensitive for every non-constant f ∈
C(X,R).

Proof. We will construct such a t.d.s. resorting to the theory of symbolic

dynamics. The idea comes from Example 6.5 in [17].

Let A1 = 1010, k1 = |A1| = 4 and A2 = A10k1A1. Recursively we put

kn = |An| and

An+1 = An0knAn, n ≥ 1.

It is clear that x = lim
n→∞

An is a recurrent point. Let (X,σ) = (Orb(x, σ), σ),

where σ is the shift. Then (X,σ) is transitive, not minimal as the fixed point

{0 = (0, 0, . . .)} is in X. It is also not weakly mixing, since N([1010], [1010]) ∩
N([1010], [0100]) = ∅.

We claim that S2(X,σ) = {(y,0) : y ∈ X \{0}}∪{(0, y) : y ∈ X \{0}}. Note

that for the including relation it suffices to show for the above transitive point x,

(x,0) ∈ S2(X,σ). This is clear since for any non-empty open neighbourhoods

U, V of x,0 respectively there are n ≥ 1 and points xn1 = An0knAn . . . , x
n
2 =

An0kn+1 . . . such that xn1 , x
n
2 ∈ [An] ⊂ U , and so T 2kn(xn1 )∈U and T 2kn(xn2 )∈V .

Now we show the included relation. Let y1 6= y2 ∈ X \ {0}. Without loss of

generality there are i < j ∈ Z+ such that 1 = y1(i) 6= y2(i) = 0 and 0 =

y1(j) 6= y2(j) = 1. Let n ∈ N be such that kn > j. Observe that for each

pair (z1, z2) ∈ [An] × [An], it has the form of z1 = An0knB10knB20kn . . . and

z2 = An0knC10knC20kn . . ., where Bs, Cs ∈ {An, 0kn} for all s ∈ N. Then if

there are m ∈ N and a point z1 ∈ [An] such that σmz1 ∈ [(y1)[0,j]], we can find

some s ∈ N such that Bs = An. By the construction, if (y1, y2) ∈ S2(X,σ)

then for any point z2 ∈ [An] with σmz2 ∈ [(y2)[0,j]] the corresponding word Cs
must be 0kn . While (y2)[0,j] is a subword of Cs0

kn since kn > j. This leads to

a contradiction with y2(j) = 1. So the claim holds.

It is easy to check that this system satisfies the conditions in Proposition 4.6

(with Y = {0}), and so it is f -sensitive for every non-constant f ∈ C(X,R). �

Remark 4.8. Example 4.7 motivates the construction of a t.d.s. satisfying

the conditions in Proposition 4.6 with Y being any finite set. For example, let

A1 = 1010, k1 = |A1| = 4, A2 = A10k1A1 and A3 = A21k2A2. Recursively put
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kn = |An|,

A2n = A2n−10k2n−1A2n−1 and A2n+1 = A2n1k2nA2n, n ≥ 1.

Let x = lim
n→∞

An and (X,σ) = (Orb(x, σ), σ) with Y = {0,1}. We leave the

similar verifications to the reader.

It is easy to see that the system in Example 4.7 is indeed proximal with

{0 = (0, 0, . . .)} as the unique minimal point. We wonder if such a system can

be improved to an M -system (or further to a P -system) with all the properties

retained. Note that Ye and Zhang showed in [17] that an M -system (X,T ) is

finitely sensitive (i.e. n-sensitive for any n ∈ N), and recently Wang, Chen and

Fu [15] generalized and proved this result for commutative semigroup actions.

Among other things, Ye and Zhang [17] also presented an example of E-system

which has a unique minimal point and is not 5-sensitive. We point out that the

sensitive pairs in such E-system contain the set {(y,0) : y ∈ X \ {0}} ∪ {(0, y) :

y ∈ X \ {0}} and so it keeps apparently all the properties listed in Example 4.7.

In the following we shall answer the above question positively by modifying

the construction in Example 4.7.

Example 4.9. There is a P -system (X,T ) which is neither minimal nor

weakly mixing, such that (X,T ) is f -sensitive for every non-constant f ∈C(X,R).

Proof. Let A1 = 1011, k1 = |A1| = 4. Recursively for n ≥ 1 we put

kn = |An| and

An+1 = An0knAnA
l1n
1 A

l2n
2 . . . A

ln−1
n
n−1An,

where |A1|l
1
n = |A2|l

2
n = . . . = |An−1|l

n−1
n = |An| = kn. It is easy to see that for

each m ∈ N, lmn →∞ when n→∞.

Let x = lim
n→∞

An and X = Orb(x, σ). It is clear that under the shift map σ,

the pair (X,σ) is a transitive t.d.s. and has a dense set of periodic points and

therefore not minimal. It is also not weakly mixing, since N([1011], [1011]) ∩
N([1011], [0110]) = ∅.

We claim that {(y,0) : y ∈ X \ {0}} ∪ {(0, y) : y ∈ X \ {0}} ⊂ S2(X,σ) (
X × X. For the first included relation it suffices to show for the above tran-

sitive point x, (x,0) ∈ S2(X,σ). This is clear since for any non-empty open

neighbourhoods U , V of x,0 respectively there are n ≥ 1 and points xn1 =

An0knAn . . . , x
n
2 = An0kn+1 . . . such that xn1 , x

n
2 ∈ [An] ⊂ U , and so T 2kn(xn1 )∈

U and T 2kn(xn2 ) ∈ V . The second included relation follows from its non-weak

mixing property along Proposition 3.3.

By the same reason this system meets the conditions in Proposition 4.6 (with

Y = {0}), and so it is f -sensitive for every non-constant f ∈ C(X,R).
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Examples 4.7 and 4.9 tell us generally that f -sensitiveness of t.d.s. for all

non-constant f ∈ C(X,R) cannot ensure its weak mixing property. Nonetheless

in some particular cases this condition is enough.

Proposition 4.10. Let (X,S) be a minimal t.d.s. with S being a commu-

tative group. Then X is weakly mixing if and only if it is f -sensitive for every

non-constant f ∈ C(X,R).

Proof. It suffices to show the sufficiency. Assume that (X,S) is not weakly

mixing. Since (X,S) is a minimal and S is a commutative group (and so

a commutative C-semigroup), then by Theorem 3.2 and Proposition 3.3 we have

Q(X,S) = S2(X,S) ∪∆2(X) ( X ×X. A remarkable result on the regionally

proximal relation Q(X,S) says that it is an equivalence relation for commutative

group actions [3].

Now let π : X → Xeq := X/Q(X,S). So (Xeq, S) is not a singleton. Let

f ∈ C(Xeq) be a non-constant function and write f(x) = f(π(x)). Then f is

also a non-constant function and f ∈ C(X,R). We also have f(x1) = f(x2)

for every pair (x1, x2) ∈ S2(X,S). By Theorem 4.1, (X,S) is not f -sensitive,

a contradiction. �

Inspired by Examples 4.7 and 4.9, to ensure weak mixing property we may

try to put extra conditions on the collection of all sensitive functions. With this

idea in mind we introduce the notion of extreme f -sensitivity. To be specific,

for a given f ∈ C(X,R), we say that a t.d.s. (X,S) is extremely f -sensitive if

for every 0 < ε < sup {|f(x)− f(y)| : x 6= y}, it is f -sensitive with ε being an

f -sensitive constant.

Proposition 4.11. Let (X,S) be a t.d.s. with S being a commutative semi-

group. Then (X,S) is weakly mixing if and only if for every non-constant

f ∈ C(X,R), it is extremely f -sensitive.

Proof. It suffices to show the sufficiency. Let x1 6= x2 ∈ X. Define a func-

tion

f(x) =
d(x, x1)

d(x, x1) + d(x, x2)
.

It is clear that f is continuous. Moreover, we have f(x) = 0 if and only if

x = x1, f(x) = 1 if and only if x = x2, and sup {|f(x)− f(y)| : x 6= y} = 1. By

assumption, (X,S) is extremely f -sensitive, we claim that (x1, x2) is a sensitive

pair. Indeed, for any 0 < ε < 1 and any non-empty open subset U ⊂ X, there are

y1, y2 ∈ U and s ∈ S such that |f(sy1)− f(sy2)| > 1− ε. Observe the property

of f , without loss of generality we assume sy1 ∈ B(x1, ε) and sy2 ∈ B(x2, ε).

This implies that (x1, x2) is a sensitive pair. Hence S2(X,S)∪∆2(X) = X2 and

so (X,S) is weakly mixing by Proposition 3.3.
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5. Multi-sensitive functions for semigroup actions

In this section we add another restriction on sensitive functions by defining

its multi-variants forms.

Fix n ∈ N and non-constant functions f1, . . . , fn ∈ C(X,R). We say that

a t.d.s. (X,S) is (f1, . . . , fn)-sensitive (or equivalently (f1, . . . , fn) is an n-sensi-

tive function tuple for (X,S)) if there exists δ > 0 such that for every non-empty

open subset U of X, there exist x, y ∈ U and s ∈ S with |fi(sx)− fi(sy)| > δ

for all 1 ≤ i ≤ n. It is clear that if (X,S) is (f1, . . . , fn+1)-sensitive for some

n ∈ N then it is (f1, . . . , fn)-sensitive.

Similarly to the proof of Theorem 4.1 we have a characterization of multi-

sensitive functions. The details are left to the reader.

Proposition 5.1. Let (X,S) be a transitive t.d.s. with S being a C-semi-

group, n ∈ N and f1, . . . , fn ∈ C(X,R). Then (X,S) is (f1, . . . , fn)-sensitive

if and only if there exists a sensitive pair (x1, x2) ∈ X2 \ ∆2(X) such that

fk(x1) 6= fk(x2) for every 1 ≤ k ≤ n.

With Proposition 5.1 in hand we can present a characterization of sensitive

pair as follows. For comparison we remind that the systems at this time are not

needed to be transitive and S can be adapted to any semigroup.

Theorem 5.2. Let (X,S) be a t.d.s. A pair (x1, x2) ∈ X ×X is sensitive if

and only if for every f1, f2 ∈ C(X,R) with fj(x1) 6= fj(x2), j = 1, 2, (X,S) is

(f1, f2)-sensitive.

Proof. Necessity follows from Proposition 5.1. For emphasis that it does

not need extra restrictions on X and S, we provide the details. Assume a pair

(x1, x2) is sensitive and fj ∈ C(X,R) with fj(x1) 6= fj(x2), j = 1, 2. Put

δ = min {|f1(x1)− f1(x2)| , |f2(x1)− f2(x2)|}/2. Let ε ∈ R be such that 0 <

ε < δ/2. By the compactness of X there is η > 0 such that if d(x, y) < η then

|fj(x)− fj(y)| < ε for j = 1, 2. For this η, since (x1, x2) is sensitive, then for

any non-empty open subset U of X, there are y1, y2 ∈ U and s ∈ S such that

d(xi, syi) < η, i = 1, 2. This implies that

|fj(sy1)− fj(sy2)| > δ, j = 1, 2,

and then (X,S) is (f1, f2)-sensitive.

For sufficiency, we assume that (X,S) is (f1, f2)-sensitive for every f1, f2
in C(X,R) with f1(x1) 6= f1(x2) and f2(x1) 6= f2(x2). Apparently then x1 6= x2.

We shall show that (x1, x2) is a sensitive pair. Let U be a non-empty open subset

of X and ε ∈ R be such that 0 < ε < d(x1, x2)/2. By the Urysohn lemma we

can choose f1 ∈ C(X,R) such that f1(x) = 1 when x = x1 and f1(x) = 0 when

x ∈ X\B(x1, ε). Similarly choose f2 ∈ C(X,R) such that f2(x) = 1 when x = x2
and f2(x) = 0 when x ∈ X \ B(x2, ε). For f1 and f2, by assumption there is
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δ > 0 such that there are y1, y2 ∈ U and s ∈ S such that |f1(sy1)− f1(sy2)| > δ

and |f2(sy1)− f2(sy2)| > δ. From the former we know that at least one of sy1
and sy2 is in B(x1, ε). By the same reason one of them belongs also to B(x2, ε).

Without loss of generality we assume syi ∈ B(xi, ε) for i = 1, 2, and this implies

that (x1, x2) is a sensitive pair. �

Repeating the same arguments we can conclude the following

Proposition 5.3. Let (X,S) be a t.d.s. and n ≥ 2. A tuple (x1, . . . , xn) ∈
Xn \ ∆n(X) is sensitive if and only if for every f1, . . . , fn ∈ C(X,R) with

fk(xi) 6= fk(xj) for every 1 ≤ i 6= j ≤ n and every 1 ≤ k ≤ n, (X,S) is

(f1, . . . , fn)-sensitive.

Now we are ready to show the main characterization of this section.

Theorem 5.4. Let (X,S) be a t.d.s. with S being a commutative semigroup.

Then (X,S) is weakly mixing if and only if for every n ∈ N and every non-

constant f1, . . . , fn ∈ C(X,R), it is (f1, . . . , fn)-sensitive.

Proof. Sufficiency follows from Lemma 2.2 and Propositions 3.3 and 5.3.

For necessity, by Proposition 5.1, it suffices to show that for every n ∈ N and all

non-constant f1, . . . , fn ∈ C(X,R) there is a sensitive pair (x1, x2) ∈ X2\∆2(X)

such that fk(x1) 6= fk(x2) for every 1 ≤ k ≤ n. This is clear and for completeness

we give the details for n = 2. That is, if there is a sensitive pair (x1, x2)

such that f1(x1) = f1(x2) and f2(x1) 6= f2(x2), choose x3 ∈ X \ {x1, x2} such

that f1(x1) 6= f1(x3) and then either we have f2(x1) 6= f2(x3) or f2(x2) 6=
f2(x3). Since (x1, x3), (x2, x3) ∈ S2(X,T ) by Proposition 3.3, in any case (X,S)

is (f1, f2)-sensitive. �

As pointed out, for each n ∈ N and non-constant functions f1, . . . , fn ∈
C(X,R), (f1, . . . , fn+1)-sensitivity implies (f1, . . . , fn)-sensitivity. In the follow-

ing we provide examples to show that the converse is not true.

Example 5.5. There is a transitive system (X,T ) such that it is f -sensitive

but not (f, g)-sensitive. Here f, g ∈ C(X,R) are non-constant and there are

x1, x2 ∈ X such that f(x1) 6= f(x2) and g(x1) 6= g(x2).

Proof. Consider the t.d.s. (X,T ) constructed by Ye and Zhang in [17,

Example 6.5]. That is, let A1 = 1010, k1 = |A1| = 4 and A2 = A10k1A10k1 .

Put recursively kn = |An| and An+1 = An0knAn0kn for n ≥ 1. Define x =

lim
n→∞

An and (X,T ) as its orbit closure under the shift map. It is known that

(X,T ) is transitive but neither minimal nor weakly mixing, and in particular

S2(X,T ) = {(y,0) : y ∈ X \ {0}} ∪ {(0, y) : y ∈ X \ {0}}. Choose (x1, x2) ∈
X ×X \ (S2(X,T ) ∪∆2(X)), then by Theorem 5.2, it is not (f, g)-sensitive for

some f, g ∈ C(X,R) with f(x1) 6= f(x2) and g(x1) 6= g(x2). By Proposition 4.6,

(X,S) is f -sensitive for any non-constant f ∈ C(X,R). �
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Example 5.6. Fix n ≥ 3. There is a minimal system (X,T ) such that it is

(f1, . . . , fn−1)-sensitive but not (f1, . . . , fn)-sensitive. Here f1, . . . , fn ∈ C(X,R)

and there are x1, . . . , xn ∈ X such that fk(xi) 6= fk(xj) for every 1 ≤ i 6= j ≤ n

and every 1 ≤ k ≤ n.

Proof. Let (X,T ) be a minimal system which is (n − 1)-sensitive but not

n-sensitive. We refer the reader to [17] for explicit examples. By Propositions

3.1 and 5.3, we know that such t.d.s. (X,T ) is the suitable one satisfying all the

properties as stated. �

6. Equicontinuous functions for semigroup actions

In this section, we consider the opposite of sensitive functions — equicon-

tinuous functions. A dichotomy result between the sensitive and equicontinuous

sides will be studied.

Let (X,S) be a t.d.s. and f ∈ C(X,R). Following [6], a point x ∈ X is

said to be f -equicontinuous if for every ε > 0 there exists δ > 0 such that for

every y ∈ X with d(x, y) < δ, we have |f(sx) − f(sy)| < ε for each s ∈ S. We

say that (X,S) is an f -equicontinuous system (or equivalently say that f is an

equicontinuous function for (X,S)) if for every ε > 0 there exists δ > 0 such that

whenever d(x, y) < δ, |f(sx)− f(sy)| < ε for each s ∈ S. (X,S) is an f -almost

equicontinuous system (or f is an almost equicontinuous function for (X,S)) if

the collection of all f -equicontinuous points is residual (i.e. contains a dense Gδ
subset) in X.

We remark that when we omit the action of f and replace |f(sx)− f(sy)| by

d(sx, sy) in the definitions above, we get the classical concepts of equicontinuous

point, equicontinuous system and almost equicontinuous system correspondingly.

By compactness of X, it is easy to see that (X,S) is f -equicontinuous if and

only if every point in X is f -equicontinuous. It is also clear that if f is a constant

function then (X,S) is f -equicontinuous.

Proposition 6.1. Let (X,S) be a t.d.s. and x ∈ X. The point x ∈ X is

equicontinuous if and only if it is f -equicontinuous for all f ∈ C(X,R).

Proof. Let x ∈ X be an equicontinuous point, f ∈ C(X,R) and ε > 0. By

compactness there is 0 < δ′ < ε such that if d(x, y) < δ′ then |f(x)− f(y)| < ε.

For this δ′, using the equicontinuity of x, there is δ > 0 such that d(sx, sy) < δ′

for all s ∈ S whenever d(x, y) < δ. This implies that |f(sx)− f(sy)| < ε for all

s ∈ S whenever d(x, y) < δ, proving necessity.

As for sufficiency, assume x ∈ X is not an equicontinuous point, then there

is δ > 0 such that for any n ∈ N there are xn with d(x, xn) < 1/n and sn ∈ S
such that d(snx, snxn) > 3δ. Without loss of generality let y1 = lim

n→∞
snx

and y2 = lim
n→∞

snxn. It is clear that d(y1, y2) ≥ 3δ. By the Urysohn lemma
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choose f ∈ C(X,R) such that f(x) = 1 when x ∈ B(y1, δ) and f(x) = 0 when

x ∈ B(y2, δ). We have |f(snx)− f(snxn)| = 1 for n large enough, and which in

turn implies that x is not an f -equicontinuous point, a contradiction. �

Consequently we have the followings:

Corollary 6.2. A t.d.s. (X,S) is equicontinuous if and only if it is f -

equicontinuous for all f ∈ C(X,R).

Corollary 6.3. A t.d.s. (X,S) is almost equicontinuous if and only if it is

f -almost equicontinuous for all f ∈ C(X,R).

Let Ceq(X) be the collection of all equicontinuous functions for (X,S). The

following result reveals that it is a closed subspace of the Banach space C(X,R)

with the supremum norm ‖ · ‖∞.

Proposition 6.4. Ceq(X) is a closed subspace of C(X,R).

Proof. First it is easy to show that if f, g ∈ Ceq(X) then for all real numbers

α, β, αf +βg is also in Ceq(X). To show that Ceq(X) is closed, we need to show

C(X,R)\Ceq(X) is open. For each f ∈ C(X,R)\Ceq(X). Assume x is a non-f -

equicontinuous point. Then there is δ > 0 such that for any open neighbourhood

U of x, there are y ∈ U and s ∈ S such that |f(sx)−f(sy)| > δ. Let g ∈ C(X,R)

with sup
x∈X
|f(x)− g(x)| < δ/3. Then

|g(sx)− g(sy)| ≥ |f(sx)− f(sy)| − |f(sx)− g(sx)| − |f(sy)− g(sy)|

> δ − δ/3− δ/3 = δ/3.

This implies that B‖·‖∞(f, δ/3) ⊂ C(X,R) \ Ceq(X) and so Ceq(X) is closed. �

For a given f ∈ C(X,R) and k ∈ N, we write

Gfk =
{
x ∈ X : there exists δ > 0 such that

sup
s∈S
|f(sx)− f(sy)| < 1/k whenever d(x, y) < δ

}
.

It is clear that Gfk is open and Gf =
∞⋂
k=1

Gfk is the collection of all f -equiconti-

nuous points.

We have the following dichotomy theorem. Note that the classical dichotomy

result without the influence of continuous functions was first proved under Z+

action by Auslander and Yorke [4] and Akin, Auslander and Berg [2] and recently

generalized to C-semigroup actions by Kontorovich and Megrelishvili [10].

Theorem 6.5. Let (X,S) be a t.d.s. with S being a C-semigroup and f ∈
C(X,R).
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(a) If (X,S) is transitive then it is either f -almost equicontinuous or f -

sensitive.

(b) If (X,S) is minimal then it is either f -equicontinuous or f -sensitive.

Proof. (a) If (X,S) is not f -sensitive, then for any ε > 0 there exists a non-

empty open subset Uε such that |f(sx1)−f(sx2)| < ε for any x1, x2 ∈ Uε and s ∈
S. Let x ∈ TranS . Then there is sε ∈ S such that sεx ∈ Uε and so the open set

Vε := s−1ε Uε is a neighbourhood of x. This yields that |f(ssεy1)− f(ssεy2)| < ε

for any y1, y2 ∈ Vε and s ∈ S. Since S is a C-semigroup the set S\Ssε is finite. So

we can shrink the set Vε (still denoting it by Vε) so that |f(sy1)−f(sy2)| < ε holds

for all y1, y2 ∈ Vε and s ∈ S. This means that x ∈
∞⋂
k=1

Gfk . Since the transitive

points are dense and the set Gfk is open, Gf is residual and therefore (X,S) is

f -almost equicontinuous. (b) follows from (a) and the fact that TranS = X. �
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