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CONCENTRATION OF GROUND STATE SOLUTIONS

FOR FRACTIONAL HAMILTONIAN SYSTEMS

César Torres — Ziheng Zhang

Abstract. We are concerned with the existence of ground states solutions
to the following fractional Hamiltonian systems:

(FHS)λ

−tD
α
∞(−∞Dαt u(t))− λL(t)u(t) +∇W (t, u(t)) = 0,

u ∈ Hα(R,Rn),

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, λ > 0 is a parameter, L ∈ C(R,Rn2
)

is a symmetric matrix for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W (t, u) is

the gradient of W (t, u) at u. Assuming that L(t) is a positive semi-definite

symmetric matrix for all t ∈ R, that is, L(t) ≡ 0 is allowed to occur in
some finite interval T of R, W (t, u) satisfies the Ambrosetti–Rabinowitz

condition and some other reasonable hypotheses, we show that (FHS)λ has

a ground sate solution which vanishes on R \ T as λ → ∞, and converges
to u ∈ Hα(R,Rn), where u ∈ Eα0 is a ground state solution of the Dirichlet

BVP for fractional systems on the finite interval T . Recent results are

generalized and significantly improved.

1. Introduction

Fractional differential equations both ordinary and partial ones are applied

in mathematical modeling of processes in physics, mechanics, control theory,

biochemistry, bioengineering and economics. Therefore, the theory of fractional
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differential equations is an area intensively developing during the last decades

[1], [8]. The monographs [13], [16], [19] enclose a review of methods for solv-

ing fractional differential equations, which are an extension of procedures from

differential equations theory.

Recently, also equations including both left and right fractional derivatives

are discussed. Apart from their possible applications, equations with left and

right derivatives are an interesting and new field in fractional differential equa-

tions theory. In this topic, many results are obtained in dealing with the exis-

tence and multiplicity of solutions of nonlinear fractional differential equations

by using techniques of nonlinear analysis, such as fixed point theory (including

Leray–Schauder nonlinear alternative) [2], topological degree theory (including

co-incidence degree theory) [11] and comparison method (including upper and

lower solutions and monotone iterative method) [32] and so on.

It should be noted that critical point theory and variational methods have

also turned out to be very effective tools in determining the existence of solutions

for integer order differential equations. The idea behind them is trying to find

solutions to a given boundary value problem by looking for critical points of

a suitable energy functional defined on an appropriate function space. In the

last 30 years, the critical point theory has become a wonderful tool in studying

the existence of solutions to differential equations with variational structures, we

refer the reader to the books by to Mawhin and Willem [14], Rabinowitz [20],

Schechter [23] and the references therein.

(FHS)λ, if α = 1 and λ = 1, reduces to the following second order Hamilton-

ian systems:

(HS) ü− L(t)u+∇W (t, u) = 0.

It is well known that the existence of homoclinic solutions to Hamiltonian systems

and their importance in the study of the behavior of dynamical systems have

been recognized since Poincaré [18]. They may be “organizing centers” for the

dynamics in their neighborhood. From their existence one may, under certain

conditions, infer the existence of chaos nearby or the bifurcation behavior of

periodic orbits. During the past two decades, with the works of [17] and [21]

variational methods and critical point theory have been successfully applied to

the study of the existence and multiplicity of homoclinic solutions to (HS).

Assuming that L(t) and W (t, u) are independent of t or periodic in t, many

authors have studied the existence of homoclinic solutions to (HS), see for in-

stance [3], [4], [21] and the references therein and some more general Hamiltonian

systems are considered in the recent papers [9], [10]. In this case, the existence of

homoclinic solutions can be obtained by going to the limit of periodic solutions

to approximating problems. If L(t) and W (t, u) are neither autonomous nor

periodic in t, the existence of homoclinic solutions to (HS) is quite different from
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the case of periodic systems, because of the lack of compactness of the Sobolev

embedding, see [4], [17], [22] and the references therein.

Motivated by the above classical works, in [25] the author considered the

following fractional Hamiltonian systems:

(FHS)

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,Rn),

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2

) is a symmetric and positive

definite matrix for all t ∈ R, W ∈ C1(R×Rn,R) and ∇W (t, u) is the gradient of

W (t, u) at u. Assuming that L(t) and W (t, u) satisfy the following hypotheses,

the author showed that (FHS) possesses at least one nontrivial solution via the

Mountain Pass Theorem:

(L) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists

l ∈ C(R, (0,∞)) such that l(t)→∞ as |t| → ∞ and

(1.1) (L(t)u, u) ≥ l(t)|u|2 for all t ∈ R and u ∈ Rn.

(W1) W ∈ C1(R× Rn,R) and there is a constant θ > 2 such that

0 < θW (t, u) ≤ (∇W (t, u), u) for all t ∈ R and u ∈ Rn \ {0}.

(W2) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly with respect to t ∈ R.

(W3) There exists W ∈ C(Rn,R) such that

|W (t, u)|+ |∇W (t, u)| ≤ |W (u)| for every t ∈ R and u ∈ Rn.

(W1) is the so-called Ambrosetti–Rabinowitz condition, which implies that, as

|u| → ∞, W (t, u) has superquadratic growth. Inspired by this work, using the

genus properties of critical point theory, in [33] the authors established some

new criterion to guarantee the existence of infinitely many solutions to (FHS)

for the case that W (t, u) is subquadratic as |u| → ∞, where the condition (L) is

also needed to guarantee that the functional corresponding to (FHS) satisfies the

(PS) condition (see [15] where a similar result was obtained). In addition, very

recently, using the fountain theorem, in [31], the authors established the existence

of infinitely many solutions to (FHS) for the case that W (t, u) is superquadratic

as |u| → ∞ without the Ambrosetti–Rabinowitz condition. Moreover, recently

in [26] the author firstly discussed the following perturbed fractional Hamiltonian

systems:

(PFHS)

−tD
α
∞(−∞D

α
t u(t))− L(t)u(t) +∇W (t, u(t)) = f(t),

u ∈ Hα(R,Rn),

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2

) is a symmetric and positive

definite matrix for all t ∈ R, W ∈ C1(R×Rn,R) and ∇W (t, u) is the gradient of



626 C. Torres — Z. Zhang

W (t, u) at u, f ∈ C(R,Rn) and belongs to L2(R,Rn). Under the conditions (L),

(W1)–(W3) and assuming that the L2-norm of f is sufficiently small, he showed

that (PFHS) has at least two nontrivial solutions, this has been generalized in

[31] where the condition (L) is also satisfied.

As is well known, the condition (L) is the so-called coercive condition and

is very restrictive. In fact, for a simple choice like L(t) = τ Idn, condition (1.1)

is not satisfied, where τ > 0 and Idn is the n × n identity matrix. Motivated

by this fact, in [34] the authors focused their attention on the case that L(t) is

bounded in the sense that

(L)′ L ∈ C(R,Rn2

) is a symmetric and positive definite matrix for all t ∈ R
and there are constants 0 < τ1 < τ2 <∞ such that

τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 for all (t, u) ∈ R× Rn.

If the potential W (t, u) is assumed to be subquadratic as |u| → +∞, then they

also showed that (FHS) possesses infinitely many solutions. See [30] for a related

result.

Here we must point out, to obtain the existence or multiplicity of solutions

to (FHS) (or (PFHS)), that all the papers mentioned above need the assumption

that the symmetric matrix L(t) is positive definite, see (L) and (L)′. Inspired

by [25], [26], [33], [34], in the present paper we deal with the following fractional

Hamiltonian systems with a parameter:

(FHS)λ

−tD
α
∞(−∞D

α
t u(t))− λL(t)u(t) +∇W (t, u(t)) = 0,

u ∈ Hα(R,Rn),

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, λ > 0 is a parameter, L ∈ C(R,Rn2

) is

a symmetric matrix for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W (t, u) is the

gradient of W (t, u) at u. Unlike the papers on this problem, we require that

L(t) is a positive semi-definite symmetric matrix for all t ∈ R, that is, L(t) ≡ 0

is allowed to occur in some finite interval T of R. Explicitly,

(L)1 L ∈ C(R,Rn×n) is a symmetric matrix for all t ∈ R; there exists a non-

negative continuous function l : R→ R and a constant c > 0 such that

(L(t)u, u) ≥ l(t)|u|2,

and the set {l < c} := {t ∈ R | l(t) < c} is nonempty with meas{l < c}
< 1/C2

∞, where meas{ · } is the Lebesgue measure and C∞ is the best

Sobolev constant for the embedding of Xα into L∞(R);

(L)2 J = int(l−1(0)) is a nonempty finite interval and J = l−1(0);

(L)3 there exists an open interval T ⊂ J such that L(t) ≡ 0 for all t ∈ T .

In this case, we assume that W ∈ C1(R× Rn,Rn) satisfy (W1)–(W3) and
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(W4) s 7→ 〈∇W (t, sq), q〉/sθ−1 is strictly increasing for all q 6= 0 and s > 0, θ

is given by (W1).

Remark 1.1. We note that, under assumption (W1), there are constants

c1 > 0 and c2 > 0 such that (see [25]):

(a) W (t, u) ≥ c1|u|θ, |u| ≥ 1,

(b) W (t, u) ≤ c2|u|θ, |u| ≤ 1.

Furthermore, by (a) we obtain that

(1.2) lim
|u|→∞

W (t, u)

|u|2
=∞ uniformly in t.

Since W (t, q) can be replaced by W (t, q)−W (t, 0), we may also assume without

loss of generality that W (t, 0) = 0 for all t.

Now, we are in the position to state our main result.

Theorem 1.2. Suppose that (L)1–(L)3, (W1)–(W4) are satisfied, then there

exists Λ∗ > 0 such that for every λ > Λ∗, (FHS)λ has a ground state solution.

Remark 1.3. Note that in (L)1–(L)3, we assume that L(t) is a positive semi-

definite symmetric matrix for all t ∈ R. Therefore, the hypotheses (L) and (L)′

on L(t) are not satisfied. Thus the results in [25], [26], [33], [34] are generalized

and improved significantly.

Moreover, as mentioned above, the coercive condition (L) is used to establish

some compact embedding theorems to guarantee that the (PS) condition (or

other weak compactness conditions) holds, which is the essential step to obtain

the existence of homoclinic solutions to (FHS) via the Mountain Pass Theorem.

In the present paper, we assume that L(t) satisfies (L)1–(L)3 and could not

obtain some compact embedding theorem. Therefore, the main difficulty is to

adapt some new technique to overcome this issue and test the (PS) condition is

verified, see Lemma 3.10.

Here we must mention the recent works [27], [35]. In fact, in [27], assuming

that L(t) satisfies (L)1–(L)3, the author showed that (FHS)λ has at least one

nontrivial solution for the case that the potential W (t, u) satisfies the following

subquadratic assumptions as |u| → ∞:

(W5) there exist a constant γ ∈ (1, 2) and a positive function b ∈ Lp(R) with

p ∈ (1, 2/(2− γ)] such that

|∇W (t, u)| ≤ b(t)|u|γ−1 for all (t, u ∈ R× Rn);

(W6) there exist two constants η, δ > 0 such that

|W (t, u)| ≥ η|u|γ for all x ∈ T and u ∈ R with |u| ≤ δ.
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Furthermore in [35], the authors have complemented the previous work by con-

sidering the superquadratic potential when |u| → ∞. They obtained the same

results as in [27].

For a technical reason, we assume that there exists 0 < L < +∞ such that

T = [0, L], where T is given by (L)3. For the concentration of solutions we have

the following result.

Theorem 1.4. Let uλ be a solution to problem (FHS)λ obtained in Theo-

rem 1.2, then uλ → ũ strongly in Hα(R) as λ → ∞, where ũ is a ground state

solution to the equation

(1.3)
tD

α
L0D

α
t u = ∇W (t, u), t ∈ (0, L),

u(0) = u(L) = 0.

Remark 1.5. We recall that, Theorems 1.2 and 1.4 give a positive answer to

the question formulated in [35]. For the proof of Theorems 1.2 and 1.4 we adapt

some ideas from [5], [24], [35].

The remaining part of this paper is organized as follows. Some preliminary

results are presented in Section 2. In Section 3, we accomplish the proof of

Theorem 1.2 and in Section 4 we present the proof of Theorem 1.4.

2. Preliminary results

In this section, for the reader’s convenience, firstly we introduce some basic

definitions of fractional calculus. The Liouville–Weyl fractional integrals of order

0 < α < 1 are defined as

−∞I
α
x u(x) =

1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ) dξ

and

xI
α
∞u(x) =

1

Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ) dξ.

The Liouville–Weyl fractional derivative of order 0 < α < 1 is defined as the

left-inverse operator of the corresponding Liouville–Weyl fractional integral

(2.1) −∞D
α
xu(x) =

d

dx
−∞I

1−α
x u(x)

and

(2.2) xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x).

The definitions of (2.1) and (2.2) may be written in an alternative form as follows:

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ

and

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)

ξα+1
dξ.
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Moreover, recall that the Fourier transform û(w) of u(x) is defined by

û(w) =

∫ ∞
−∞

e−iwxu(x) dx.

In order to establish the variational structure which enables us to reduce

the existence of solutions to (FHS)λ to find critical points of the corresponding

functional, it is necessary to construct appropriate function spaces. In what

follows, we introduce some fractional spaces, for more details see [7]. To this

end, denote by Lp(R,Rn) (2 ≤ p <∞) the Banach spaces of functions on R with

values in Rn under the norms

‖u‖Lp =

(∫
R
|u(t)|p dt

)1/p

,

and L∞(R,Rn) is the Banach space of essentially bounded functions from R into

Rn equipped with the norm

‖u‖∞ = ess sup{|u(t)| : t ∈ R}.

Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p0 is defined

by the closure of C∞0 ([0, T ],Rn) with respect to the norm

(2.3) ‖u‖α,p =

(∫ T

0

|u(t)|p dt+

∫ T

0

|0Dα
t u(t)|p dt

)1/p

, for all u ∈ Eα,p0 .

This space can be characterized by

Eα,p0 = {u ∈ Lp([0, T ],Rn) : 0D
α
t u ∈ Lp([0, T ],Rn) and u(0) = u(T ) = 0}.

Moreover, (Eα,p0 , ‖ · ‖α,p) is a reflexive and separable Banach space. Considering

the space Eα,p0 , we have the following results.

Proposition 2.1 ([12]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p0 ,

we have

(2.4) ‖u‖Lp ≤
Tα

Γ(α+ 1)
‖0Dα

t u‖Lp .

If α > 1/p and 1/p+ 1/q = 1, then

(2.5) ‖u‖∞ ≤
Tα−1/p

Γ(α)((α− 1)q + 1)1/q
‖0Dα

t u‖Lp .

Due to (2.4), we can consider in Eα,p0 the following norm:

(2.6) ‖u‖α,p = ‖0Dα
t u‖Lp ,

and (2.6) is equivalent to (2.3).

Proposition 2.2 ([12]). Let 0 < α ≤ 1 and 1 < p < ∞. Assume that

α > 1/p and {uk}⇀ u in Eα,p0 . Then uk → u in C[0, T ], i.e.

‖uk − u‖∞ → 0, as k →∞.
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We denote by Eα = Eα,20 , this is a Hilbert space with respect to the norm

‖u‖α = ‖u‖α,2 given by (2.6). For α > 0, define the semi-norm

|u|Iα−∞ = ‖−∞Dα
xu‖L2

and the norm

(2.7) ‖u‖Iα−∞ = (‖u‖2L2 + |u|2Iα−∞)1/2

and let

Iα−∞ = C∞0 (R,Rn)
‖ · ‖Iα−∞ ,

where C∞0 (R,Rn) denotes the space of infinitely differentiable functions from R
into Rn with vanishing property at infinity.

Now we can define the fractional Sobolev space Hα(R,Rn) in terms of the

Fourier transform. Choose 0 < α < 1, define the semi-norm

|u|α = ‖|w|αû‖L2

and the norm

‖u‖α = (‖u‖2L2 + |u|2α)1/2

and let

(2.8) Hα = C∞0 (R,Rn)
‖ · ‖α

.

Moreover, we note that a function u ∈ L2(R,Rn) belongs to Iα−∞ if and only if

|w|αû ∈ L2(R,Rn).

Especially, we have

|u|Iα−∞ = ‖|w|û‖L2 .

Therefore, Iα−∞ and Hα are equivalent with equivalent semi-norm and norm.

Analogously to Iα−∞, we introduce Iα∞. Define the semi-norm

|u|Iα∞ = ‖xDα
∞u‖L2

and the norm

(2.9) ‖u‖Iα∞ = (‖u‖2L2 + |u|2Iα∞)1/2

and let

Iα∞ = C∞0 (R,Rn)
‖ · ‖Iα∞ .

Then Iα−∞ and Iα∞ are equivalent with equivalent semi-norm and norm, see [7].

Let C(R,Rn) denote the space of continuous functions from R into Rn. Then

we obtain the following lemma.

Lemma 2.3 ([25, Theorem 2.1]). If α > 1/2, then Hα ⊂ C(R,Rn) and there

is a constant C∞ = Cα,∞ such that

(2.10) ‖u‖∞ = sup
x∈R
|u(x)| ≤ C∞‖u‖α.
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Remark 2.4. From Lemma 2.3, we know that if u ∈ Hα with 1/2 < α < 1,

then u ∈ Lp(R,Rn) for all p ∈ [2,∞), since∫
R
|u(x)|p dx ≤ ‖u‖p−2∞ ‖u‖2L2 .

In what follows, we introduce the fractional space in which we will construct

the variational framework for (FHS)λ. Let

Xα =

{
u ∈ Hα :

∫
R

[
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
]
dt <∞

}
,

then Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =

∫
R

[
(−∞D

α
t u(t),−∞Dα

t v(t)) + (L(t)u(t), v(t))
]
dt

and the corresponding norm is ‖u‖2Xα = 〈u, u〉Xα .

For λ > 0, we also need the following inner product:

〈u, v〉Xα,λ =

∫
R

[
(−∞D

α
t u(t),−∞Dα

t v(t)) + λ(L(t)u(t), v(t))
]
dt

and the corresponding norm is ‖u‖2Xα,λ = 〈u, u〉Xα,λ .

Lemma 2.5 ([35]). Suppose L(t) satisfies (L)1 and (L)2, then Xα is contin-

uously embedded in Hα.

Remark 2.6. Under the same conditions of Lemma 2.5, we also obtain

(2.11)

∫
R
|u(t)|2 dt ≤ C2

∞meas{l < c}
1− C2

∞meas{l < c}
‖u‖Xα,λ =

1

Θ
‖u‖2Xα,λ

and

(2.12) ‖u‖2α ≤
(

1 +
C2
∞meas{l < c}

1− C2
∞meas{l < c}

)
‖u‖2Xα =

(
1 +

1

Θ

)
‖u‖2Xα,λ

for all λ ≥ 1/(cC2
∞meas{l < c}). Furthermore, for every p ∈ (2,∞) and λ ≥

1/(cC2
∞meas{l < c}), we have

(2.13)

∫
R
|u(t)|p dt ≤ 1

Θp/2 (meas{l < c})(p−2)/2
‖u‖p

Xα,λ
.

For more details see [35].

3. Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2. For this purpose, we are

going to establish the corresponding variational framework to obtain solutions

to (FHS)λ. Define the functional I : B = Xα,λ → R by

Iλ(u) =

∫
R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(λL(t)u(t), u(t))−W (t, u(t))

]
dt(3.1)

=
1

2
‖u‖2Xα,λ −

∫
R
W (t, u(t)) dt.
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Under the conditions of Theorem 1.2, as usual, we see that I ∈ C1(Xα,λ,R),

i.e. I is a continuously Fréchet-differentiable functional defined on Xα,λ. More-

over, we have

(3.2) I ′λ(u)v =

∫
R

[
(−∞D

α
t u(t),−∞Dα

t v(t))

+ (λL(t)u(t), v(t))− (∇W (t, u(t)), v(t))
]
dt

for all u, v ∈ Xα, which yields that

(3.3) I ′λ(u)u = ‖u‖2Xα,λ −
∫
R

(∇W (t, u(t)), u(t)) dt.

Remark 3.1. We note that Iλ has the geometry property of the Mountain

Pass Theorem. In fact, first we prove that there exist ρ, β > 0 such that Iλ|∂Bρ ≥
β. By Remark 2.6 and Lemma 2.3, we have

‖u‖2L2 ≤
1

Θ
‖u‖2Xα,λ , ‖u‖2α ≤

(
1 +

1

Θ

)
‖u‖2Xα,λ and ‖u‖∞ ≤ C∞‖u‖α.

Therefore

(3.4) ‖u‖∞ ≤ C∞
(

1 +
1

Θ

)1/2

‖u‖Xα,λ .

Now choose ε > 0 sufficiently small such that 1/2 − ε/Θ > 0. By (W2),

|W (t, u)| = o(|u|2) uniformly in t as |u| → 0, then for all ε > 0, there exists

δ > 0 such that

|W (t, u(t))| ≤ ε|u(t)|2 whenever |u(t)| < δ.

Let ρ = δ/(C∞(1 + 1/Θ)1/2) and ‖u‖Xα,λ ≤ ρ, then

|u(t)| ≤ C∞
(

1 +
1

Θ

)1/2

‖u‖Xα,λ ≤ δ.

Hence

(3.5) |W (t, u(t))| ≤ ε|u(t)|2, for all t ∈ R.

So, if ‖u‖Xα,λ = ρ, then

Iλ(u) =
1

2
‖u‖2Xα,λ −

∫
R
W (t, u(t)) dt(3.6)

≥
(

1

2
− ε

Θ

)
‖u‖2Xα,λ ≥

(
1

2
− ε

Θ

)
ρ2 ≡ β > 0.

Let ϕ ∈ C∞0 (R,Rn) with ‖ϕ‖Xα,λ = 1. It remains to prove that there exists

e ∈ Xα,λ such that ‖e‖Xα,λ > ρ and Iλ(e) ≤ 0, where ρ is defined above. Arguing

by contradiction, we may assume that there exists {σk} ⊂ R, |σk| → ∞ such

that Iλ(σkϕ) > 0 for all k. Then, we have

(3.7) 0 <
Iλ(σkϕ)

σ2
k

=
1

2
−
∫
R

W (t, σkϕ)

|σkϕ|2
|ϕ|2 dt.
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Since |σkϕ(t)| → ∞ for t with ϕ(t) 6= 0, and since ‖ϕ‖Xα,λ = 1, by (1.2) and

Fatou’s Lemma, we have that∫
R

W (t, σkϕ)

|σkϕ|2
|ϕ|2 dt→∞ as k →∞.

This contradicts (3.7). So we conclude taking e = σϕ with σ large enough.

Now, let us introduce the Nehari’s manifold defined by

Nλ = {u ∈ Xα,λ \ {0} : 〈I ′λ(u), u〉 = 0},

and we note that, for u ∈ Nλ

Iλ(u) = Iλ(u)− 1

2
〈I ′λ(u), u〉 =

∫
R

(
1

2
(∇W (t, u(t)), u(t))−W (t, u(t))

)
dt.

Define

cλ = inf
Nλ

Iλ(u).

In the following lemmas we assume that (L1)–(L2), (W1)–(W4) hold and

λ > 0.

Lemma 3.2. Let Sλ = {u ∈ Xα,λ : ‖u‖Xα,λ = 1}. For all u ∈ Sλ there exists

a unique σu > 0 such that σuu ∈ Nλ. Furthermore

Iλ(σuu) = max
σ≥0

Iλ(σu).

Proof. Let u ∈ Sλ be fixed and define h(σ) = Iλ(σu) for σ ≥ 0. Then

(3.8) h(σ) =
σ2

2
‖u‖2Xα,λ −

∫
R
W (t, σu(t)) dt = σ2

(
1

2
−
∫
R

W (t, σu(t))

σ2
dt

)
.

By (W2), as σ → 0

(3.9)

∫
R

W (t, σu(t))

σ2
dt→ 0

and by (1.2), as σ →∞,

(3.10)

∫
R

W (t, σu(t))

σ2
dt→∞.

Consequently, by (W4) and (3.8)–(3.10), there is a unique σu = σ(u) > 0 such

that h′(σu) = 0 and

(3.11) h(σu) = max
σ≥0

Iλ(σu).

Furthermore σuu ∈ Nλ. �

Lemma 3.3. The set Nλ is bounded away from 0. Furthermore, Nλ is closed

in Xα,λ.
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Proof. Following Remark 3.1, we can conclude that

(3.12) Iλ(u) =
1

2
‖u‖2Xα,λ + o(‖u‖2Xα,λ) as u→ 0.

Therefore there exists ν > 0 such that u ∈ Nλ implies ‖u‖Xα,λ ≥ ν. So, Nλ is

bounded away from 0.

Now we prove that the set Nλ is closed in Xα,λ. First, we note that I ′λ maps

bounded sets in Xα,λ into bounded sets in Xα,λ. In fact, let {uk} be a bounded

sequence in Xα,λ, then by (2.10) and (2.12), there exists K1 > 0 such that

‖uk‖∞ ≤ K1 for each k ∈ N. From (W2), there exists δ > 0 such that, for all

t ∈ R and |u| < δ, |∇W (t, u)| ≤ |u|.
Now, let M1 = max{W (u) : |u| ≤ K1} and K2 = max{1,M1/δ}. If

|uk(t)| < δ, then

|∇W (t, uk(t))| ≤ |uk(t)|.

On the other hand, by (W3), if δ ≤ |uk(t)| ≤ K1, then

|∇W (t, uk(t))| ≤W (uk(t)) ≤M1 ≤
M1

δ
|uk(t)|.

Therefore, for all k ∈ N and t ∈ R

(3.13) |∇W (t, uk(t))| ≤ K2|uk(t)|.

Next, by (3.13), the Hölder inequality and (2.11)∣∣∣∣ ∫
Rn

(∇W (t, uk(t)), ϕ(t)) dt

∣∣∣∣ ≤ K2

∫
R
|uk(t)||ϕ(t)| dt ≤ K2

Θ
‖uk‖Xα,λ‖ϕ‖Xα,λ

for all ϕ ∈ Xα,λ. So, for each ϕ ∈ Xα,λ,

I ′λ(uk)ϕ = 〈uk, ϕ〉Xα,λ −
∫
R
(∇W (t, uk(t)), ϕ(t)) dt

≤ ‖uk‖2Xα,λ‖ϕ‖
2
Xα,λ +

K2

Θ
‖uk‖Xα,λ‖ϕ‖Xα,λ ≤ K3.

Now we are in position to prove that Nλ is closed in Xα,λ. Let uk ∈ Nλ be

such that uk → u in Xα,λ. Since I ′λ(uk) is bounded, then we infer from

I ′λ(uk)uk − I ′λ(u)u = 〈I ′λ(uk)− I ′λ(u), u〉 − 〈I ′λ(uk), uk − u〉 → 0, as k →∞,

that I ′λ(u)u = 0. Furthermore, since Nλ is bounded away from 0, we have

‖u‖Xα,λ = lim
k→∞

‖uk‖Xα,λ ≥ ν > 0.

So u ∈ Nλ. �

Lemma 3.4. There exists κ > 0 such that σu ≥ κ for all u ∈ Sλ, and for

each compact subset W ⊂ Sλ there exists a constant CW > 0 such that

σu ≤ CW for all u ∈ Sλ.
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Proof. For u ∈ Sλ, there exists σu > 0 such that σuu ∈ Nλ. By Lemma 3.3,

one sees that σu ≥ ν > 0. To prove that σu ≤ CW for all u ∈W ⊂ Sλ, we argue

by contradiction. Suppose that there exist uk ∈ W such that σk = σuk → ∞.

Since W is compact, there exists u ∈W such that uk → u in Xα,λ and uk(t)→
u(t) almost everywhere on R. Therefore

Iλ(σkuk)

σ2
k

=
1

2
‖uk‖2Xα,λ −

∫
R

W (t, σkuk(t))

σ2
k

dt(3.14)

=
1

2
−
∫
R

W (t, σkuk(t))

|σkuk(t)|2
|uk(t)|2 dt.

Since |σkuk(t)| → ∞ if u(t) 6= 0, it follows from (1.2), (3.14) and Fatou’s Lemma

that Iλ(σkuk)→ −∞ as k →∞. �

Lemma 3.5. cλ ≥ ρ > 0, where ρ > 0 is independent of λ.

Proof. For u ∈ Nλ, (W1) and Lemma 3.3, we obtain:

Iλ(u) = Iλ(u)− 1

θ
〈I ′λ(u), u〉

=

(
1

2
− 1

θ

)
‖u‖2Xα,λ +

∫
R

(
1

θ
(∇W (t, u), u)−W (t, u)

)
dt

≥
(

1

2
− 1

θ

)
‖u‖2Xα,λ ≥

(
1

2
− 1

θ

)
ν := ρ > 0. �

Remark 3.6. Following [29], by Lemma 3.2 we can get the following char-

acterization:

cλ = inf
u∈Nλ

Iλ(u) = inf
u∈Xα,λ\{0}

max
s>0

Iλ(su) = inf
u∈Sλ\{0}

max
s>0

Iλ(su).

On the other hand, choosing ϕ0 ∈ C∞0 (T ), there exists a constant C0 > 0

independent of λ, such that

(3.15) cλ = inf
u∈Xα,λ\{0}

max
s>0

Iλ(su) ≤ max
s≥0

Iλ(sϕ0) ≤ C0.

Now, define the mapping mλ : Sλ → Nλ by setting mλ(u) := σuu, where

σu is as in Lemma 3.2 and Sλ is the unit sphere in Xα,λ. Furthermore, by

Lemma 3.2 and Proposition 3.1 of [24], mλ is a homeomorphism between Sλ and

Nλ and the inverse of mλ is given by

(3.16) m−1λ (u) =
u

‖u‖Xα,λ
.

Now we shall consider the functional Φλ : Sλ → R defined by

Φλ(u) = Iλ(mλ(u)).

As in [24], we have the following lemma.
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Lemma 3.7.

(a) Φλ ∈ C1(Sλ,R) and

〈Φ′λ(u), v〉 = ‖mλ(u)‖Xα,λ〈I ′λ(mλ(u)), v〉

for all v ∈ Tw(Sλ) = {h ∈ Xα,λ : 〈u, h〉Xα,λ = 0}.
(b) If {un} is a (PS) sequence for Φλ then {mλ(un)} is a (PS) sequence for

Iλ. If {un} ⊂ Nλ is a bounded (PS) sequence for Iλ, then {m−1λ (un)} is

a (PS) sequence for Φλ, where m−1λ (u) is given by (3.16).

(c) infSλ Φλ = inf
Nλ

Iλ. Furthermore, u is a critical point of Φλ if and only if

mλ(u) is a nontrivial critical point of Iλ. Furthermore, the corresponding

critical values of Φλ and Iλ coincide.

Now, we investigate the minimizing sequence for Iλ.

Lemma 3.8. Suppose that (L1)–(L2), (W1)–(W4) hold and λ ≥ 1. If {un} ⊂
Nλ be a minimizing sequence for Iλ, then {un} is bounded in Xα,λ.

Proof. Let {un} ⊂ Nλ such that Iλ(un)→ cλ, as n→∞. Then, by (W1)

and 〈I ′λ(un), un〉 = 0, we obtain

cλ + o(1) =

(
1

2
− 1

θ

)
‖un‖2Xα,λ(3.17)

+

∫
R

(
1

θ
(∇W (t, un(t)), un(t))−W (t, un(t))

)
dt

≥
(

1

2
− 1

θ

)
‖un‖2Xα,λ .

Therefore, (3.17) implies that {un} is bounded in Xα,λ. �

Following Lemmas 2.1 and 3.3 in [29], we can show the following version of

the Lions concentration compactness principle.

Lemma 3.9. Let r > 0 and q ≥ 2. Let {un} ∈ Xα,λ be bounded. If

lim
n→∞

sup
y∈R

∫
(y−r,y+r)

|un(t)|q dt = 0,

then un → 0 in Lp(R,Rn) for any p > 2.

Lemma 3.10. Under the assumptions of Theorem 1.2, if {un} ⊂ Nλ is a se-

quence such that

(3.18) Iλ(un)→ cλ and I ′λ(un)→ 0,

then there exists Λ∗ > 0 such that {un} has a convergent subsequence in Xα,λ

for all λ > Λ∗.
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Proof. By (3.17) and (3.18) we deduce that {un} is bounded in Xα,λ. Since

Xα,λ is a reflexive space, there is a subsequence still called {un} ∈ Xα,λ and

u ∈ Xα,λ such that un ⇀ u. Furthermore, by Remark 2.6 and the Sobolev

Theorem

un → u in Lploc(R) for p ∈ [2,∞],

and, we have either {un} is vanishing, namely

(3.19) lim
n→∞

sup
t∈R

∫
(t−r,t+r)

|un(s)|2 ds = 0

or non-vanishing, namely, there exist r, β > 0 and a sequence {tn} ⊂ R such that

(3.20) lim
n→∞

∫
(tn−r,tn+r)

|un(s)|2 ds ≥ β.

We claim that u 6= 0. By contradiction, we suppose that u = 0. If {un} is

vanishing, by Lemma 3.9, un → 0 in Lp(R,Rn) for p > 2. So, following the ideas

of the proof of Lemma 3.3 , we deduce that

(3.21)

∫
R
(∇W (t, un(t)), un(t)) dt→ 0.

Therefore, by (3.21) and 〈I ′λ(un), un〉 = 0, we obtain that

‖un‖Xα,λ → 0 as n→∞.

This contradicts the conclusion of Lemma 3.3.

On the other hand, by (3.15) and (3.17) we have

(3.22) lim sup
n→∞

‖un‖2Xα,λ ≤
2θ

θ − 2
C0.

Therefore, if {un} is non-vanishing, then (3.20) implies that |tn| → ∞ as n→∞.

Then |(tn − r, tn + r) ∩ {t ∈ R : l(t) < c}| → 0 as n → ∞. So, by the Hölder

inequality, we obtain

(3.23)

∫
(tn−r,tn+t)∩{l<c}

u2n dt→ 0.

Combining (3.20), (3.22) and (3.23), one has

2θ

θ − 2
C0 ≥ lim sup

n→∞
‖un‖2Xα,λ ≥ λc lim sup

n→∞

∫
(tn−r,tn+r)∩{l≥c}

u2n(t) dt(3.24)

=λc lim sup
n→∞

(∫
(tn−r,tn+r)

u2n(t) dt

−
∫
(tn−r,tn+r)∩{l<c}

u2n(t) dt

)
≥ λcβ.

Let

Λ∗ = max

{
1

cC2
∞meas{l < c}

,
2θC0

(θ − 2)cβ

}
,

then we obtain that λ > Λ∗ > 2θ C0/((θ − 2)cβ), which contradicts with (3.24).
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To conclude, we need to prove that uk → u in Xα,λ. First, we note that the

function (∇W (t, su), su)/θ −W (t, su) is non-decreasing for s > 0. In fact, let

0 < s1 < s2, then we have

(∇W (t, s1u), s1u)− θW (t, s1u)

= (∇W (t, s1u), s1u) + θW (t, s2u)− θW (t, s2u)− θW (t, s1u)

= (∇W (t, s1u), s1u)− θW (t, s2u) + θ

∫ s2

s1

(∇W (t, ru), u) dr

≤ (∇W (t, s1u), s1u)− θW (t, s2u) +
(∇W (t, s2u), u)

sθ−12

(sθ2 − sθ1)

≤ (∇W (t, s1u), s1u)− θW (t, s2u) + s2(∇W (t, s2u), u)− s1(∇W (t, s1u, u))

= (∇W (t, s2u), s2u)− θW (t, s2u).

Finally, since u 6= 0 and Lemma 3.2 there exists σ ∈ (0, 1] such that σu ∈ Nλ,

then by Fatou’s Lemma, it is easy to check that

cλ ≤ Iλ(σu) = Iλ(σu)− 1

θ
I ′λ(σu)σu

= σ2

(
1

2
− 1

θ

)
‖u‖2Xα,λ +

∫
R

(
1

θ
(∇W (t, σu(t)), σu(t))−W (t, σu(t))

)
dt

≤
(

1

2
− 1

θ

)
‖u‖2Xα,λ +

∫
R

(
1

θ
(∇W (t, u(t)), u(t))−W (t, u(t))

)
dt

≤ lim inf
n→∞

{(
1

2
− 1

θ

)
‖un‖2Xα,λ+

∫
R

(
1

θ
(∇W (t, un(t)), un(t))−W (t, un(t))

)}
≤ lim sup

k→∞

{(
1

2
− 1

θ

)
‖un‖2Xα,λ+

∫
R

(
1

θ
(∇W (t, un(t)), un(t))−W (t, un(t))

)}
= lim
n→∞

{
Iλ(un)− 1

θ
I ′λ(un)un

}
= cλ.

Hence, ‖un‖2Xα,λ → ‖u‖
2
Xα,λ in R, from which it follows that un → u in Xα,λ.�

4. Proof of Theorem 1.4

In the following, we study the concentration of solutions for problem (FHS)λ
as λ→∞. Firstly, for technical reason we consider T = [0, L] and the following

fractional boundary value problem:

(4.1)

tD
α
L0D

α
t u = ∇W (t, u), t ∈ (0, L),

u(0) = u(L) = 0.

Associated to (4.1) we have the functional I : Eα0 → R given by

I(u) :=
1

2

∫ T

0

|0Dα
t u(t)|2 dt−

∫ T

0

F (t, u(t)) dt
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and we have that I ∈ C1(Eα0 ,R) with

I ′(u)v =

∫ T

0

〈 0Dα
t u(t), 0D

α
t v(t)〉 dt−

∫ T

0

〈∇W (t, u(t)), v(t)〉 dt.

The Nehari manifold corresponding to I is defined by Ñ = {u ∈ Eα0 \ {0} :

I ′(u)u = 0}, and let c̃ = inf
u∈Ñ

I(u). Furthermore, we can show that

c̃ = inf
w∈Eα0

max
σ>0

I(σw) = inf
u∈S̃\{0}

max
σ>0

I(σu),

and if we follow the ideas of the proof of Theorem 1.2, we can get the following

existence result:

Theorem 4.1. Suppose that W satisfies (W1)–(W4) with t ∈ [0, L], then

(4.1) has a ground state solution.

Furthermore, under the assumptions (L)1–(L)3 and (W1)–(W2), we can get

that cλ ≤ c̃ for λ > 0. In fact, by Theorem 4.1, let ũ ∈ Eα0 be a ground state

solution of (4.1), then c̃ = I(ũ). Therefore,

cλ ≤ max
σ>0

Iλ(σũ) = max
σ>0

I(σũ) = I(ũ) = c̃ for all λ > 0.

Proof of Theorem 1.4. We follow the argument in [35]. For any sequence

λk → ∞, let uk = uλk be the critical point of Iλk , namely cλk = Iλk(uk) and

I ′λk(uk) = 0 and, by (W1), we get

cλk = Iλk(uk) = Iλk(uk)− 1

θ
I ′λk(uk)uk

=

(
1

2
− 1

θ

)
‖uk‖2Xα,λk +

∫
R

[
1

θ
(∇W (t, uk(t)), uk(t))−W (t, uk(t))

]
dt

≥
(

1

2
− 1

θ

)
‖uk‖2Xα,λk .

Therefore, by (3.15),

(4.2) sup
k≥1
‖uk‖2Xα,λk ≤

2θ

θ − 2
C0,

where C0 is independent of λk. Therefore, we may assume that uk ⇀ ũ weakly

in Xα,λk . Moreover, by Fatou’s Lemma, we have∫
R
l(t)|ũ(t)|2 dt ≤ lim inf

k→∞

∫
R
l(t)|uk(t)|2 dt

≤ lim inf
k→∞

∫
R

(L(t)uk(t), uk(t)) dt ≤ lim inf
k→∞

‖uk‖2Xα,λk
λk

= 0.

Thus, ũ = 0 almost everywhere in R \ J . Now, for any ϕ ∈ C∞0 (T,Rn), since

I ′λk(uk)ϕ = 0, it is easy to see that∫ L

0

(0D
α
t ũ(t), 0D

α
t ϕ(t)) dt−

∫ L

0

(∇W (t, ũ(t)), ϕ(t)) dt = 0,
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that is, ũ is a solution to (4.1) by the density of C∞0 (T,Rn) in Eα.

Next, we show that uk → ũ strongly in Lr(R) for 2 ≤ r <∞. Otherwise, by

Lemma 3.9, there exist δ,R0 > 0 and tk ∈ R such that∫ tk+R0

tk−R0

(uk − ũ)2 dt ≥ δ.

Moreover, tn →∞, hence meas{(tk−R0, tk+R0)∩{l < c}} → 0. By the Hölder

inequality, we have∫
(tk−R0,tk+R0)∩{l<c}

|uk − ũ|2 dt

≤ meas{(tk −R0, tk +R0) ∩ {l < c}}‖uk − ũ‖∞ → 0.

Consequently,

‖uk‖2Xα,λk ≥λkc
∫
(tk−R0,tk+R0)∩{l≥c}

|uk(t)|2 dt

=λkc

∫
(tk−R0,tk+R0)∩{l≥c}

|uk(t)− ũ(t)|2 dt

=λkc

(∫
(tk−R0,tk+R0)

|uk(t)− ũ(t)|2 dt

−
∫
(tk−R0,tk+R0)∩{l<c}

|uk − ũ|2 dt
)

+ o(1)→∞,

which contradicts (4.2).

Now we show that uk → ũ in Xα. Since I ′λk(uk)uk = I ′λk(uk)ũ = 0, we have

(4.3) ‖uk‖2Xα,λk =

∫
R

(∇W (t, uk(t)), uk(t)) dt

and

(4.4) 〈uk, ũ〉λk =

∫
R

(∇W (t, uk(t)), ũ(t)) dt,

which implies that

lim
k→∞

‖uk‖2Xα,λk = lim
k→∞

〈uk, ũ〉Xα,λk = lim
k→∞

〈uk, ũ〉Xα = ‖ũ‖2Xα .

Furthermore, by the weakly semi-continuity of norms, we obtain

‖ũ‖2Xα ≤ lim inf
k→∞

‖uk‖2Xα ≤ lim sup
k→∞

‖uk‖2Xα ≤ lim
k→∞

‖uk‖2Xα,λk .

So uk → ũ in Xα, and uk → ũ in Hα(R,Rn) as k →∞. �
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