Topological Methods in Nonlinear Analysis Volume 50, No. 2, 2017, 603–622 DOI: 10.12775/TMNA.2017.032

© 2017 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

GLOBAL AND LOCAL STRUCTURES OF OSCILLATORY BIFURCATION CURVES WITH APPLICATION TO INVERSE BIFURCATION PROBLEM

Tetsutaro Shibata

Abstract. We consider the bifurcation problem

 $-u''(t)=\lambda(u(t)+g(u(t))),\quad u(t)>0,\quad t\in I:=(-1,1),\quad u(\pm 1)=0,$ where $g(u)=g_1(u):=\sin\sqrt{u}$ and $g_2(u):=\sin u^2(=\sin(u^2)),$ and $\lambda>0$ is a bifurcation parameter. It is known that λ is parameterized by the maximum norm $\alpha=\|u_\lambda\|_\infty$ of the solution u_λ associated with λ and is written as $\lambda=\lambda(g,\alpha).$ When $g(u)=g_1(u),$ this problem has been proposed in Cheng [4] as an example which has arbitrary many solutions near $\lambda=\pi^2/4.$ We show that the bifurcation diagram of $\lambda(g_1,\alpha)$ intersects the line $\lambda=\pi^2/4$ infinitely many times by establishing the precise asymptotic formula for $\lambda(g_1,\alpha)$ as $\alpha\to\infty$. We also establish the precise asymptotic formulas for $\lambda(g_i,\alpha)$ (i=1,2) as $\alpha\to\infty$ and $\alpha\to0$. We apply these results to the new concept of inverse bifurcation problems.

²⁰¹⁰ Mathematics Subject Classification. Primary: 34C23; Secondary: 34F10.

Key words and phrases. Oscillatory bifurcation; global and local structure of bifurcation curves.

This research was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 25400167) of the Japan Society for the Promotion of Science.